Do you want to publish a course? Click here

Disorder Induced Effects on the Critical Current Density of Iron Pnictide BaFe_1.8 Co_0.2 As_2 single crystals

240   0   0.0 ( 0 )
 Added by Martin Zehetmayer
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

Investigating the role of disorder in superconductors is an essential part of characterizing the fundamental superconducting properties as well as assessing potential applications of the material. In most cases, the information available on the defect matrix is poor, making such studies difficult, but the situation can be improved by introducing defects in a controlled way, as provided by neutron irradiation. In this work, we analyze the effects of neutron irradiation on a Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$ single crystal. We mainly concentrate on the magnetic properties which were determined by magnetometry. Introducing disorder by neutron irradiation leads to significant effects on both the reversible and the irreversible magnetic properties, such as the transition temperature, the upper critical field, the anisotropy, and the critical current density. The results are discussed in detail by comparing them with the properties in the unirradiated state.



rate research

Read More

Three independent components of critical current density, one for the H//c axis and the other two for the H//ab plane, have been studied in CaKFe4As4 single crystals. When the magnetic field is applied along the c axis, we observed fish-tail-like peaks in the M-H hysteresis loop, and the magnetization at higher temperatures exceeds that at lower temperatures at high fields. When the field is applied parallel to the ab plane, a dip structure is observed in the M-H hysteresis loop near the self-field. In addition, for the H//ab plane, we succeeded in separately evaluating the large and significantly anisotropic in-plane and out-of-plane Jc. Transmission electron microscopy revealed the presence of planar defects parallel to the ab plane in CaKFe4As4, which have not been observed in any other iron-based superconductors. We discuss the possible relationship between the anomalous Jc behavior and the planar defects.
In- and out-of-plane magnetic penetration depths were measured in three iron-based pnictide superconducting systems. All studied samples of both 122 systems show a robust power-law behavior, $lambda (T) T^n$, with the sample-dependent exponent n=2-2.5, which is indicative of unconventional pairing. This scenario could be possible either through scattering in a $s_{pm }$ state or due to nodes in the superconducting gap. In the Nd-1111 system, the interpretation of data may be obscured by the magnetism of rare-earth ions. The overall anisotropy of the pnictide superconductors is small. The 1111 system is about two times more anisotropic than the 122 system. Our data and analysis suggest that the iron-based pnictides are complex superconductors in which a multiband three-dimensional electronic structure and strong magnetic fluctuations play important roles.
The DC magnetization and AC complex magnetic susceptibilities were measured for MgB2 single crystals, unsubstituted and carbon substituted with the composition of Mg(B_0.94C_0.06)2. The measurements were performed in AC and DC magnetic fields oriented parallel to the c-axis of the crystals. From the DC magnetization loops and the AC susceptibility measurements, critical current densities (Jc) were derived as a function of temperature and the DC and AC magnetic fields. Results show that the substitution with carbon decreases Jc at low magnetic fields, opposite to the well known effect of an increase of Jc at higher fields. AC magnetic losses were derived from the AC susceptibility data as a function of amplitude and the DC bias magnetic field. The AC losses were determined for temperatures of 0.6 and 0.7 of the transition temperature Tc, so close to the boiling points of LH2 and LNe, potential cooling media for magnesium diboride based composites. The results are analyzed and discussed in the context of the critical state model.
Detailed measurements of the in-plane resistivity were performed in a high-quality Ba(Fe$_{1-x}$Co$_{x}$)$_2$As$_2$ ($x=0.065$) single crystal, in magnetic fields up to 9 T and with different orientations $theta$ relative to the crystal $c$ axis. A significant $rho(T)_{H,theta}$ rounding is observed just above the superconducting critical temperature $T_c$ due to Cooper pairs created by superconducting fluctuations. These data are analyzed in terms of a generalization of the Aslamazov-Larkin approach, that extends its applicability to high reduced-temperatures and magnetic fields. This method allows us to carry out a criterion-independent determination of the angular dependence of the upper critical field, $H_{c2}(theta)$. In spite of the relatively small anisotropy of this compound, it is found that $H_{c2}(theta)$ presents a significant deviation from the single-band 3D anisotropic Ginzburg-Landau (3D-aGL) approach, particularly for large $theta$ (typically above $sim60^o$). These results are interpreted in terms of the multiband nature of these materials, in contrast with other proposals for similar $H_{c2}(theta)$ anomalies. Our results are also consistent with an effective anisotropy factor almost temperature independent near $T_c$, a result that differs from the ones obtained by using a single-band model.
We have established a simple process that allows for the one-step synthesis of KxFe2-ySe2 single crystals, which exhibit high critical current density Jc. The post annealing and quenching technique has improved the homogeneity of as-grown crystals, resulting in full shielding of the external magnetic field. The quenched crystals show a superconducting transition at Tconset = 32.9 K and Tczero = 32.1 K. The upper critical fields mu_{0}Hc2(0) for H//ab and H//c are estimated to be ~206 and ~50 T, respectively. The critical current densities Jc for H//ab and H//c reach as high as 1.0times10^{5} and 3.4times10^{4} A/cm2 at 5 K. Furthermore, Jc exhibits a high field performance and a significantly weak temperature dependence up to 5 T, suggesting strong pinning. These results demonstrate that KxFe2-ySe2 would be a promising candidate material for practical applications.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا