Recent results obtained at HERA on deeply virtual Compton scattering and exclusive vector meson production are reviewed, with the emphasis on the transition from soft to hard diffraction and on spin dynamics.
A review is presented of diffractive vector meson production at HERA, with stress on the investigation of ``hard features and comparisons with theoretical predictions based on perturbative QCD approaches.
The exclusive diffractive production of vector mesons and real photons in ep collisions has been studied at HERA in a wide kinematic range. Here the most recent experimental results are presented together with a Regge-type model and projects for new diffractive studies at LHC.
We calculate cross sections for the exclusive diffractive leptoproduction of $rho$-mesons, $gamma^*~p~to~rho~p$, within the framework of high-energy factorization. Cross sections for longitudinally and transversally polarized mesons are shown. We employ a wide variety of unintegrated gluon distributions available in the literature and compare to HERA data. The resulting cross sections strongly depend on the choice of unintegrated gluon distribution. We also present predictions for the proton target in the kinematics of the Brookhaven EIC.
Exclusive production of $rho^0$ and $J/psi$ mesons in e^+ p collisions has been studied with the ZEUS detector in the kinematic range $0.25 < Q^2 < 50 GeV^2, 20 < W < 167 GeV$ for the $rho^0$ data and $2 < Q^2 < 40 GeV^2, 50 < W < 150 GeV$ for the $J/psi$ data. Cross sections for exclusive $rho^0$ and $J/psi$ production have been measured as a function of $Q^2, W$ and $t$. The spin-density matrix elements $r^{04}_{00}, r^1_{1-1}$ and $Re r^{5}_{10}$ have been determined for exclusive $rho^0$ production as well as $r^{04}_{00}$ and $r^{04}_{1-1}$ for exclusive $J/psi$ production. The results are discussed in the context of theoretical models invoking soft and hard phenomena.