A relation between vibrational entropy and particles mean square displacement is derived in super-cooled liquids, assuming that the main effect of temperature changes is to rescale the vibrational spectrum. Deviations from this relation, in particular due to the presence of a Boson Peak whose shape and frequency changes with temperature, are estimated. Using observations of the short-time dynamics in liquids of various fragility, it is argued that (i) if the crystal entropy is significantly smaller than the liquid entropy at $T_g$, the extrapolation of the vibrational entropy leads to the correlation $T_Kapprox T_0$, where $T_K$ is the Kauzmann temperature and $T_0$ is the temperature extracted from the Vogel-Fulcher fit of the viscosity. (ii) The jump in specific heat associated with vibrational entropy is very small for strong liquids, and increases with fragility. The analysis suggests that these correlations stem from the stiffening of the Boson Peak under cooling, underlying the importance of this phenomenon on the dynamical arrest.