No Arabic abstract
Recent experimental results of searches for new phenomena performed at high energy colliders are reviewed. The results reported are based on data samples of up to 1 fb^-1 and 4 fb^-1 collected at HERA and at the Tevatron, respectively. No significant evidence for physics beyond the Standard Model has been found and limits at the 95% confidence level have been set on the mass and couplings of several possible new particles.
A summary is presented of the workshop top physics at linear colliders that was held at IFIC Valencia from the 30th of June to the 3rd July 2015. We present an up-to-date status report of studies into the potential for top quark physics of lepton colliders with an energy reach that exceeds the top quark pair production threshold, with a focus on the linear collider projects ILC and CLIC. This summary shows that such projects can offer very competitive determinations of top quark properties (mass, width) and its interactions with other Standard Model particles, in particular electroweak gauge bosons and the Higgs boson. In both areas the prospects exceed the LHC potential significantly - often by an order of magnitude.
All experimental measurements of particle physics today are beautifully described by the Standard Model. However, there are good reasons to believe that new physics may be just around the corner at the TeV energy scale. This energy range is currently probed by the Tevatron and HERA accelerators and selected results of searches for physics beyond the Standard Model are presented here. No signals for new physics have been found and limits are placed on the allowed parameter space for a variety of different particles.
The high energy programme of the HERA collider ended in March 2007. During the whole HERA programme, a combined total integrated luminosity of 1 fb$^{-1}$ was collected by the H1 and ZEUS experiments. In this context, an overview of the most recent results of both experiments concerning searches for new physics is presented. The topics covered are searches for contact interactions, leptoquarks and excited leptons, as well as studies of the isolated lepton and multi-lepton topologies, and a general signature based search.
This paper reviews the most recent results on searches for physics beyond the Standard Model at Tevatron. Both the collider experiments: CDF and DO are performing a large variety of searches such as searches for scalar top and scalar bottom particles, search for new gauge bosons, search for long-lived massive particles and general searches for new particles decaying into dijets. The results, summarized here, are a selection of what obtained recently by both the collaborations using the Run II data, collected so far.
Given the cost, both financial and even more importantly in terms of human effort, in building High Energy Physics accelerators and detectors and running them, it is important to use good statistical techniques in analysing data. Some of the statistical issues that arise in searches for New Physics are discussed briefly. They include topics such as: Should we insist on the 5 sigma criterion for discovery claims? The probability of A, given B, is not the same as the probability of B, given A. The meaning of p-values. What is Wilks Theorem and when does it not apply? How should we deal with the `Look Elsewhere Effect? Dealing with systematics such as background parametrisation. Coverage: What is it and does my method have the correct coverage? The use of p0 versus p1 plots.