Light Hidden Fermionic Dark Matter in Neutrino Experiments


Abstract in English

We consider, in a model-independent framework, the potential for observing dark matter in neutrino detectors through the interaction $bar{f} p to e^+ n$, where $f$ is a dark fermion. Operators of dimension six or less are considered, and constraints are placed on their coefficients using the dark matter lifetime and its decays to states which include $gamma$ rays or $e^+e^-$ pairs. After these constraints are applied, there remains one operator which can possibly contribute to $bar{f} p to e^+ n$ in neutrino detectors at an observable level. We then consider the results from the Super-Kamiokande relic supernova neutrino search and find that Super-K can probe the new physics scale of this interaction up to $O(100mbox{ TeV})$.

Download