No Arabic abstract
We have performed shell-model calculations for the even- and odd-mass N=82 isotones, focusing attention on low-energy states. The single-particle energies and effective two-body interaction have been both determined within the framework of the time-dependent degenerate linked-diagram perturbation theory, starting from a low-momentum interaction derived from the CD-Bonn nucleon-nucleon potential. In this way, no phenomenological input enters our effective Hamiltonian, whose reliability is evidenced by the good agreement between theory and experiment.
The advent of nucleon-nucleon potentials derived from chiral perturbation theory, as well as the so-called V-low-k approach to the renormalization of the strong short-range repulsion contained in the potentials, have brought renewed interest in realistic shell-model calculations. Here we focus on calculations where a fully microscopic approach is adopted. No phenomenological input is needed in these calculations, because single-particle energies, matrix elements of the two-body interaction, and matrix elements of the electromagnetic multipole operators are derived theoretically. This has been done within the framework of the time-dependent degenerate linked-diagram perturbation theory. We present results for some nuclei in different mass regions. These evidence the ability of realistic effective hamiltonians to provide an accurate description of nuclear structure properties.
A review is presented of the development and current status of nuclear shell-model calculations in which the two-body effective interaction is derived from the free nucleon-nucleon potential. The significant progress made in this field within the last decade is emphasized, in particular as regards the so-called V-low-k approach to the renormalization of the bare nucleon-nucleon interaction. In the last part of the review we first give a survey of realistic shell-model calculations from early to present days. Then, we report recent results for neutron-rich nuclei near doubly magic 132Sn and for the whole even-mass N=82 isotonic chain. These illustrate how shell-model effective interactions derived from modern nucleon-nucleon potentials are able to provide an accurate description of nuclear structure properties.
The density-dependent finite-range Gogny force has been used to derive the effective Hamiltonian for the shell-model calculations of nuclei. The density dependence simulates an equivalent three-body force, while the finite range gives a Gaussian distribution of the interaction in the momentum space and hence leads to an automatic smooth decoupling between low-momentum and high-momentum components of the interaction, which is important for finite-space shell-model calculations. Two-body interaction matrix elements, single-particle energies and the core energy of the shell model can be determined by the unified Gogny force. The analytical form of the Gogny force is advantageous to treat cross-shell cases, while it is difficult to determine the cross-shell matrix elements and single-particle energies using an empirical Hamiltonian by fitting experimental data with a large number of matrix elements. In this paper, we have applied the Gogny-force effective shell-model Hamiltonian to the ${it p}$- and ${it sd}$-shell nuclei. The results show good agreements with experimental data and other calculations using empirical Hamiltonians. The experimentally-known neutron drip line of oxygen isotopes and the ground states of typical nuclei $^{10}$B and $^{18}$N can be reproduced, in which the role of three-body force is non-negligible. The Gogny-force derived effective Hamiltonian has also been applied to the cross-shell calculations of the ${it sd}$-${it pf}$ shell.
This paper discusses the derivation of an effective shell-model hamiltonian starting from a realistic nucleon-nucleon potential by way of perturbation theory. More precisely, we present the state of the art of this approach when the starting point is the perturbative expansion of the Q-box vertex function. Questions arising from diagrammatics, intermediate-states and order-by-order convergences, and their dependence on the chosen nucleon-nucleon potential, are discussed in detail, and the results of numerical applications for the p-shell model space starting from chiral next-to-next-to-next-to-leading order potentials are shown. Moreover, an alternative graphical method to derive the effective hamiltonian, based on the Z-box vertex function recently introduced by Suzuki et al., is applied to the case of a non-degenerate (0+2) hbaromega model space. Finally, our shell-model results are compared with the exact ones obtained from no-core shell-model calculations.
The generalized seniority scheme has long been proposed as a means of dramatically reducing the dimensionality of nuclear shell model calculations, when strong pairing correlations are present. However, systematic benchmark calculations, comparing results obtained in a model space truncated according to generalized seniority with those obtained in the full shell model space, are required to assess the viability of this scheme. Here, a detailed comparison is carried out, for semimagic nuclei taken in a full major shell and with realistic interactions. The even-mass and odd-mass Ca isotopes are treated in the generalized seniority scheme, for generalized seniority v<=3. Results for level energies, orbital occupations, and electromagnetic observables are compared with those obtained in the full shell model space.