Do you want to publish a course? Click here

Simultaneous Multi-Wavelength Observations of Magnetic Activity in Ultracool Dwarfs. III. X-ray, Radio, and H-alpha Activity Trends in M and L Dwarfs

188   0   0.0 ( 0 )
 Added by Edo Berger
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

[Abridged] As part of our on-going investigation into the magnetic field properties of ultracool dwarfs, we present simultaneous radio, X-ray, and H-alpha observations of three M9.5-L2.5 dwarfs (BRI0021-0214, LSR060230.4+391059, and 2MASSJ052338.2-140302). We do not detect X-ray or radio emission from any of the three sources, despite previous detections of radio emission from BRI0021 and 2M0523-14. Steady and variable H-alpha emission are detected from 2M0523-14 and BRI0021, respectively, while no H-alpha emission is detected from LSR0602+39. Overall, our survey of nine M8-L5 dwarfs doubles the number of ultracool dwarfs observed in X-rays, and triples the number of L dwarfs, providing in addition the deepest limits to date, log(L_X/L_bol)<-5. With this larger sample we find the first clear evidence for a substantial reduction in X-ray activity, by about two orders of magnitude, from mid-M to mid-L dwarfs. We find that the decline in both X-rays and H-alpha roughly follows L_{X,Halpha}/L_bol ~ 10^[-0.4x(SP-M6)] for SP>M6. In the radio band, however, the luminosity remains relatively unchanged from M0 to L4, leading to a substantial increase in L_rad/L_bol. Our survey also provides the first comprehensive set of simultaneous radio/X-ray/H-alpha observations of ultracool dwarfs, and reveals a clear breakdown of the radio/X-ray correlation beyond spectral type M7, evolving smoothly from L_{ u,rad}/L_X ~ 10^-15.5 to ~10^-11.5 Hz^-1 over the narrow spectral type range M7-M9. This breakdown reflects the substantial reduction in X-ray activity beyond M7, but its physical origin remains unclear since, as evidenced by the uniform radio emission, there is no drop in the field dissipation and particle acceleration efficiency.



rate research

Read More

[Abridged] As part of our on-going investigation of magnetic activity in ultracool dwarfs we present simultaneous radio, X-ray, UV, and optical observations of LSR1835+32 (M8.5), and simultaneous X-ray and UV observations of VB10 (M8), both with a duration of about 9 hours. LSR1835+32 exhibits persistent radio emission and H-alpha variability on timescales of ~0.5-2 hr. The detected UV flux is consistent with photospheric emission, and no X-ray emission is detected to a deep limit of L_X/L_bol<10^-5.7. The H-alpha and radio emission are temporally uncorrelated, and the ratio of radio to X-ray luminosity exceeds the correlation seen in F-M6 stars by >2x10^4. Similarly, L_Halpha/L_X>10 is at least 30 times larger than in early M dwarfs, and eliminates coronal emission as the source of chromospheric heating. The lack of radio variability during four rotations of LSR1835+32 requires a uniform stellar-scale field of ~10 G, and indicates that the H-alpha variability is dominated by much smaller scales, <10% of the chromospheric volume. VB10, on the other hand, shows correlated flaring and quiescent X-ray and UV emission, similar to the behavior of early M dwarfs. Delayed and densely-sampled optical spectra exhibit a similar range of variability amplitudes and timescales to those seen in the X-rays and UV, with L_Halpha/L_X~1. Along with our previous observations of the M8.5 dwarf TVLM513-46546 we conclude that late M dwarfs exhibit a mix of activity patterns, which points to a transition in the structure and heating of the outer atmosphere by large-scale magnetic fields. We find that rotation may play a role in generating the fields as evidenced by a tentative correlation between radio activity and rotation velocity. The X-ray emission, however, shows evidence for super-saturation at vsini>25 km/s.
170 - R.A. Osten , C. Melis , B. Stelzer 2015
We report upper limits to the radio and X-ray emission from the newly discovered ultracool dwarf binary WISE J104915.57$-$531906.1 (Luhman 16AB). As the nearest ultracool dwarf binary (2 pc), its proximity offers a hefty advantage to studying plasma processes in ultracool dwarfs which are more similar in gross properties (radius, mass, temperature) to the solar system giant planets than stars. The radio and X-ray emission upper limits from the Australia Telescope Compact Array (ATCA) and Chandra observations, each spanning multiple rotation periods, provide the deepest fractional radio and X-ray luminosities to date on an ultracool dwarf, with $log{(L_{rm r, u}/L_{rm bol}) [Hz^{-1}]} < -18.1$ (5.5 GHz), $log{(L_{rm r, u}/L_{rm bol}) [Hz^{-1}]} < -17.9$ (9 GHz), and $log{(L_{rm x}/L_{rm bol})} < -5.7$. While the radio upper limits alone do not allow for a constraint on the magnetic field strength, we limit the size of any coherently emitting region in our line of sight to less than 0.2% of the radius of one of the brown dwarfs. Any source of incoherent emission must span less than about 20% of the brown dwarf radius, assuming magnetic field strengths of a few tens to a few hundred Gauss. The fast rotation and large amplitude photometric variability exhibited by the T dwarf in the Luhman 16AB system are not accompanied by enhanced nonthermal radio emission, nor enhanced heating to coronal temperatures, as observed on some higher mass ultracool dwarfs, confirming the expected decoupling of matter and magnetic field in cool neutral atmospheres.
297 - M. McLean , 2011
[Abridged] We present a new radio survey of about 100 late-M and L dwarfs undertaken with the VLA. The sample was chosen to explore the role of rotation in the radio activity of ultracool dwarfs. Combining the new sample with results from our previous studies and from the literature, we compile the largest sample to date of ultracool dwarfs with radio observations and measured rotation velocities (167 objects). In the spectral type range M0-M6 we find a radio activity-rotation relation, with saturation at log(L_rad/L_bol) 10^(-7.5) above vsini~5 km/s, similar to the relation in H-alpha and X-rays. However, at spectral types >M7 the ratio of radio to bolometric luminosity increases regardless of rotation velocity, and the scatter in radio luminosity increases. In particular, while the most rapid rotators (vsini>20 km/s) exhibit super-saturation in X-rays and H-alpha, this effect is not seen in the radio. We also find that ultracool dwarfs with vsini>20 km/s have a higher radio detection fraction by about a factor of 3 compared to objects with vsini<10 km/s. When measured in terms of the Rossby number (Ro), the radio activity-rotation relation follows a single trend and with no apparent saturation from G to L dwarfs and down to Ro~10^-3; in X-rays and H-alpha there is clear saturation at Ro<0.1, with super-saturation beyond M7. A similar trend is observed for the radio surface flux (L_rad/R^2) as a function of Ro. The continued role of rotation in the overall level of radio activity and in the fraction of active sources, and the single trend of L_rad/L_bol and L_rad/R^2 as a function of Ro from G to L dwarfs indicates that rotation effects are important in regulating the topology or strength of magnetic fields in at least some fully-convective dwarfs. The fact that not all rapid rotators are detected in the radio provides additional support to the idea of dual dynamo states.
[Abridged] We present the first simultaneous radio, X-ray, ultraviolet, and optical spectroscopic observations of the M8.5 dwarf TVLM513-46546, with a duration of 9 hours. These observations are part of a program to study the origin of magnetic activity in ultracool dwarfs, and its impact on chromospheric and coronal emission. Here we detect steady quiescent radio emission superposed with multiple short-duration, highly polarized flares; there is no evidence for periodic bursts previously reported for this object, indicating their transient nature. We also detect soft X-ray emission, with L_X/L_bol~10^-4.9, the faintest to date for any object later than M5, and a possible weak X-ray flare. TVLM513-46546 continues the trend of severe violation of the radio/X-ray correlation in ultracool dwarfs, by nearly 4 orders of magnitude. From the optical spectroscopy we find that the Balmer line luminosity exceeds the X-ray luminosity by a factor of a few, suggesting that, unlike in early M dwarfs, chromospheric heating may not be due to coronal X-ray emission. More importantly, we detect a sinusoidal H-alpha light curve with a period of 2 hr, matching the rotation period of TVLM513-46546. This is the first known example of such Balmer line behavior, which points to a co-rotating chromospheric hot spot or an extended magnetic structure, with a covering fraction of about 50%. This feature may be transitory based on the apparent decline in light curve peak during the four observed maxima. From the radio data we infer a large scale steady magnetic field of ~100 G, in good agreement with the value required for confinement of the X-ray emitting plasma. The radio flares, on the other hand, are produced in a component of the field with a strength of ~3 kG and a likely multi-polar configuration.
66 - John E. Gizis 2000
I discuss observations of two traditional age indicators, chromospheric activity and kinematics, in late-M and L dwarfs near the hydrogen-burning limit. The frequency and strength of chromospheric activity disappears rapidly as a function of temperature over spectral types M8-L4. There is evidence that young late-M and L dwarfs have weaker activity than older ones, the opposite of the traditional stellar age-activity relation. The kinematics of L dwarfs confirm that lithium L dwarfs are younger than non-lithium dwarfs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا