Do you want to publish a course? Click here

NMR shifts for polycyclic aromatic hydrocarbons from first-principles

97   0   0.0 ( 0 )
 Added by Timo Thonhauser
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present first-principles, density-functional theory calculations of the NMR chemical shifts for polycyclic aromatic hydrocarbons, starting with benzene and increasing sizes up to the one- and two-dimensional infinite limits of graphene ribbons and sheets. Our calculations are performed using a combination of the recently developed theory of orbital magnetization in solids, and a novel approach to NMR calculations where chemical shifts are obtained from the derivative of the orbital magnetization with respect to a microscopic, localized magnetic dipole. Using these methods we study on equal footing the $^1$H and $^{13}$C shifts in benzene, pyrene, coronene, in naphthalene, anthracene, naphthacene, and pentacene, and finally in graphene, graphite, and an infinite graphene ribbon. Our results show very good agreement with experiments and allow us to characterize the trends for the chemical shifts as a function of system size.



rate research

Read More

The amount of deuterium locked up in polycyclic aromatic hydrocarbons (PAHs) has to date been an uncertain value. We present a near-infrared (NIR) spectroscopic survey of HII regions in the Milky Way, Large Magellanic Cloud (LMC), and Small Magellanic Cloud (SMC) obtained with AKARI, which aims to search for features indicative of deuterated PAHs (PAD or Dn-PAH) to better constrain the D/H ratio of PAHs. Fifty-three HII regions were observed in the NIR (2.5-5 {mu}m), using the Infrared Camera (IRC) on board the AKARI satellite. Through comparison of the observed spectra with a theoretical model of deuterated PAH vibrational modes, the aromatic and (a)symmetric aliphatic C-D stretch modes were identified. We see emission features between 4.4-4.8 {mu}m, which could be unambiguously attributed to deuterated PAHs in only six of the observed sources, all of which are located in the Milky Way. In all cases, the aromatic C-D stretching feature is weaker than the aliphatic C-D stretching feature, and, in the case of M17b, this feature is not observed at all. Based on the weak or absent PAD features in most of the observed spectra, it is suggested that the mechanism for PAH deuteration in the ISM is uncommon.
Aromaticity is a well-known phenomenon in both physics and chemistry, and is responsible for many unique chemical and physical properties of aromatic molecules. The primary feature contributing to the stability of polycyclic aromatic hydrocarbons is the delocalised $pi$-electron clouds in the $2p_z$ orbitals of each of the $N$ carbon atoms. While it is known that electrons delocalize among the hybridized $sp^2$ orbitals, this paper proposes quantum walk as the mechanism by which the delocalization occurs, and also obtains how the functional chemical structures of these molecules arise naturally out of such a construction. We present results of computations performed for some benzoid polycyclic aromatic hydrocarbons in this regard, and show that the quantum walk-based approach does correctly predict the reactive sites and stability order of the molecules considered.
Recent calculations have shown that the UV bump at about 217.5 nm in the extinction curve can be explained by a complex mixture of PAHs in several charge states. Other studies proposed that the carriers are a restricted population made of neutral and singly-ionised dehydrogenated coronene molecules (C24Hn, n less than 3), in line with models of the hydrogenation state of interstellar PAHs predicting that medium-sized species are highly dehydrogenated. To assess the observational consequences of the latter hypothesis we have undertaken a systematic study of the electronic spectra of dehydrogenated PAHs. We use our first results to see whether such spectra show strong general trends upon dehydrogenation. We used state-of-the-art techniques in the framework of the density functional theory (DFT) to obtain the electronic ground-state geometries, and of the time- dependent DFT to evaluate the electronic excited-state properties. We computed the absorption cross-section of the species C24Hn (n=12,10,8,6,4,2,0) in their neutral and cationic charge-states. Similar calculations were performed for other PAHs and their fullydehydrogenated counterparts. pi electron energies are always found to be strongly affected by dehydrogenation. In all cases we examined, progressive dehydrogenation translates into a correspondingly progressive blue shift of the main electronic transitions. In particular, the pi-pi* collective resonance becomes broader and bluer with dehydrogenation. Its calculated energy position is therefore predicted to fall in the gap between the UV bump and the far-UV rise of the extinction curve. Since this effect appears to be systematic, it poses a tight observational limit on the column density of strongly dehydrogenated medium-sized PAHs.
Present routes to produce magnetic organic-based materials adopt a common strategy: the use of magnetic species (atoms, polyradicals, etc.) as building blocks. We explore an alternative approach which consists of selective hydrogenation of Polycyclic Aromatic Hydrocarbons. Self-Consistent-Field (SCF) (Hartree-Fock and DFT) and multi-configurational (CISD and MCSCF) calculations on coronene and corannulene, both hexa-hydrogenated, show that the formation of stable high spin species is possible. The spin of the ground states is discussed in terms of the Hund rule and Liebs theorem for bipartite lattices (alternant hydrocarbons in this case). This proposal opens a new door to magnetism in the organic world.
143 - Takashi Onaka 2013
We report the results of a search for emission features from interstellar deuterated polycyclic aromatic hydrocarbons (PAHs) in the 4um region with the Infrared Camera (IRC) onboard AKARI. No significant excess emission is seen in 4.3-4.7um in the spectra toward the Orion Bar and M17 after the subtraction of line emission from the ionized gas. A small excess of emission remains at around 4.4 and 4.65um, but the ratio of their intensity to that of the band emission from PAHs at 3.3-3.5um is estimated as 2-3%. This is an order of magnitude smaller than the values previously reported and also those predicted by the model of deuterium depletion onto PAHs. Since the subtraction of the ionized gas emission introduces an uncertainty, the deuterated PAH features are also searched for in the reflection nebula GN 18.14.0, which does not show emission lines from ionized gas. We obtain a similar result that excess emission in the 4um region, if present, is about 2% of the PAH band emission in the 3um region. The present study does not find evidence for the presence of the large amount of deuterated PAHs that the depletion model predicts. The results are discussed in the context of deuterium depletion in the interstellar medium.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا