Do you want to publish a course? Click here

Network strategies to understand the aging process and help age-related drug design

153   0   0.0 ( 0 )
 Added by Peter Csermely
 Publication date 2009
  fields Biology Physics
and research's language is English




Ask ChatGPT about the research

Recent studies have demonstrated that network approaches are highly appropriate tools to understand the extreme complexity of the aging process. The generality of the network concept helps to define and study the aging of technological, social networks and ecosystems, which may give novel concepts to cure age-related diseases. The current review focuses on the role of protein-protein interaction networks (interactomes) in aging. Hubs and inter-modular elements of both interactomes and signaling networks are key regulators of the aging process. Aging induces an increase in the permeability of several cellular compartments, such as the cell nucleus, introducing gross changes in the representation of network structures. The large overlap between aging genes and genes of age-related major diseases makes drugs which aid healthy aging promising candidates for the prevention and treatment of age-related diseases, such as cancer, atherosclerosis, diabetes and neurodegenerative disorders. We also discuss a number of possible research options to further explore the potential of the network concept in this important field, and show that multi-target drugs (representing magic-buckshots instead of the traditional magic bullets) may become an especially useful class of age-related future drugs.



rate research

Read More

Although accumulation of molecular damage is suggested to be an important molecular mechanism of aging, a quantitative link between the dynamics of damage accumulation and mortality of species has so far remained elusive. To address this question, we examine stability properties of a generic gene regulatory network (GRN) and demonstrate that many characteristics of aging and the associated population mortality rate emerge as inherent properties of the critical dynamics of gene regulation and metabolic levels. Based on the analysis of age-dependent changes in gene-expression and metabolic profiles in Drosophila melanogaster, we explicitly show that the underlying GRNs are nearly critical and inherently unstable. This instability manifests itself as aging in the form of distortion of gene expression and metabolic profiles with age, and causes the characteristic increase in mortality rate with age as described by a form of the Gompertz law. In addition, we explain late-life mortality deceleration observed at very late ages for large populations. We show that aging contains a stochastic component, related to accumulation of regulatory errors in transcription/translation/metabolic pathways due to imperfection of signaling cascades in the network and of responses to environmental factors. We also establish that there is a strong deterministic component, suggesting genetic control. Since mortality in humans, where it is characterized best, is strongly associated with the incidence of age-related diseases, our findings support the idea that aging is the driving force behind the development of chronic human diseases.
Innovation in synthetic biology often still depends on large-scale experimental trial-and-error, domain expertise, and ingenuity. The application of rational design engineering methods promise to make this more efficient, faster, cheaper and safer. But this requires mathematical models of cellular systems. And for these models we then have to determine if they can meet our intended target behaviour. Here we develop two complementary approaches that allow us to determine whether a given molecular circuit, represented by a mathematical model, is capable of fulfilling our design objectives. We discuss algebraic methods that are capable of identifying general principles guaranteeing desired behaviour; and we provide an overview over Bayesian design approaches that allow us to choose from a set of models, that model which has the highest probability of fulfilling our design objectives. We discuss their uses in the context of biochemical adaptation, and then consider how robustness can and should affect our design approach.
The phenotype of any organism on earth is, in large part, the consequence of interplay between numerous gene products encoded in the genome, and such interplay between gene products affects the evolutionary fate of the genome itself through the resulting phenotype. In this regard, contemporary genomes can be used as molecular records that reveal associations of various genes working in their natural lifestyles. By analyzing thousands of orthologs across ~600 bacterial species, we constructed a map of gene-gene co-occurrence across much of the sequenced biome. If genes preferentially co-occur in the same organisms, they were called herein correlogs; in the opposite case, called anti-correlogs. To quantify correlogy and anti-correlogy, we alleviated the contribution of indirect correlations between genes by adapting ideas developed for reverse engineering of transcriptional regulatory networks. Resultant correlogous associations are highly enriched for physically interacting proteins and for co-expressed transcripts, clearly differentiating a subgroup of functionally-obligatory protein interactions from conditional or transient interactions. Other biochemical and phylogenetic properties were also found to be reflected in correlogous and anti-correlogous relationships. Additionally, our study elucidates the global organization of the gene association map, in which various modules of correlogous genes are strikingly interconnected by anti-correlogous crosstalk between the modules. We then demonstrate the effectiveness of such associations along different domains of life and environmental microbial communities. These phylogenetic profiling approaches infer functional coupling of genes regardless of mechanistic details, and may be useful to guide exogenous gene import in synthetic biology.
A system-level framework of complex microbe-microbe and host-microbe chemical cross-talk would help elucidate the role of our gut microbiota in health and disease. Here we report a literature-curated interspecies network of the human gut microbiota, called NJS16. This is an extensive data resource composed of ~570 microbial species and 3 human cell types metabolically interacting through >4,400 small-molecule transport and macromolecule degradation events. Based on the contents of our network, we develop a mathematical approach to elucidate representative microbial and metabolic features of the gut microbial community in a given population, such as a disease cohort. Applying this strategy to microbiome data from type 2 diabetes patients reveals a context-specific infrastructure of the gut microbial ecosystem, core microbial entities with large metabolic influence, and frequently-produced metabolic compounds that might indicate relevant community metabolic processes. Our network presents a foundation towards integrative investigations of community-scale microbial activities within the human gut.
90 - Giulia Fiscon 2020
The novelty of new human coronavirus COVID-19/SARS-CoV-2 and the lack of effective drugs and vaccines gave rise to a wide variety of strategies employed to fight this worldwide pandemic. Many of these strategies rely on the repositioning of existing drugs that could shorten the time and reduce the cost compared to de novo drug discovery. In this study, we presented a new network-based algorithm for drug repositioning, called SAveRUNNER (Searching off-lAbel dRUg aNd NEtwoRk), which predicts drug-disease associations by quantifying the interplay between the drug targets and the disease-specific proteins in the human interactome via a novel network-based similarity measure that prioritizes associations between drugs and diseases locating in the same network neighborhoods. Specifically, we applied SAveRUNNER on a panel of 14 selected diseases with a consolidated knowledge about their disease-causing genes and that have been found to be related to COVID-19 for genetic similarity, comorbidity, or for their association to drugs tentatively repurposed to treat COVID-19. Focusing specifically on SARS subnetwork, we identified 282 repurposable drugs, including some the most rumored off-label drugs for COVID-19 treatments, as well as a new combination therapy of 5 drugs, actually used in clinical practice. Furthermore, to maximize the efficiency of putative downstream validation experiments, we prioritized 24 potential anti-SARS-CoV repurposable drugs based on their network-based similarity values. These top-ranked drugs include ACE-inhibitors, monoclonal antibodies, and thrombin inhibitors. Finally, our findings were in-silico validated by performing a gene set enrichment analysis, which confirmed that most of the network-predicted repurposable drugs may have a potential treatment effect against human coronavirus infections.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا