Binary compact object coalescence rates: The role of elliptical galaxies


Abstract in English

We estimate binary compact object merger detection rates for LIGO, including the binaries formed in ellipticals long ago. Specifically, we convolve hundreds of model realizations of elliptical- and spiral-galaxy population syntheses with a model for elliptical- and spiral-galaxy star formation history as a function of redshift. Our results favor local merger rate densities of 4times 10^{-3} {Mpc}^{-3}{Myr}^{-1} for binary black holes (BH), 3times 10^{-2} {Mpc}^{-3}{Myr}^{-1} for binary neutron stars (NS), and 10^{-2} {Mpc}^{-3}{Myr}^{-1} for BH-NS binaries. Mergers in elliptical galaxies are a significant fraction of our total estimate for BH-BH and BH-NS detection rates; NS-NS detection rates are dominated by the contribution from spiral galaxies. Using only models that reproduce current observations of Galactic NS-NS binaries, we find slightly higher rates for NS-NS and largely similar ranges for BH-NS and BH-BH binaries. Assuming a detection signal-to-noise ratio threshold of 8 for a single detector (as part of a network), corresponding to radii Cv of the effective volume inside of which a single LIGO detector could observe the inspiral of two 1.4 M_sun neutron stars of 14 Mpc and 197 Mpc, for initial and advanced LIGO, we find event rates of any merger type of 2.9* 10^{-2} -- 0.46 and 25-400 per year (at 90% confidence level), respectively. We also find that the probability P_{detect} of detecting one or more mergers with this single detector can be approximated by (i) P_{detect}simeq 0.4+0.5log (T/0.01{yr}), assuming Cv=197 {Mpc} and it operates for T years, for T between 2 days and 0.1 {yr}); or by (ii) P_{detect}simeq 0.5 + 1.5 log Cv/32{Mpc}, for one year of operation and for $Cv$ between 20 and 70 Mpc. [ABRIDGED]

Download