Do you want to publish a course? Click here

Nonzero macroscopic magnetization in half-metallic antiferromagnets at finite temperatures

97   0   0.0 ( 0 )
 Added by Ersoy Sasioglu
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

Combining density-functional theory calculations with many-body Greens-function technique, we reveal that the macroscopic magnetization in half-metallic antiferromagnets does not vanish at finite temperature as for the T=0 limit. This anomalous behavior stems from the inequivalent magnetic sublattices which lead to different intrasublattice exchange interactions. As a consequence, the spin fluctuations suppress the magnetic order of the sublattices in a different way leading to a ferrimagnetic state at finite temperatures. Computational results are presented for the half-metallic antiferromagnetic CrMnZ (Z=P,As,Sb) semi-Heusler compounds.



rate research

Read More

We report on optically induced, ultrafast magnetization dynamics in the Heusler alloy $mathrm{Co_{2}FeAl}$, probed by time-resolved magneto-optical Kerr effect. Experimental results are compared to results from electronic structure theory and atomistic spin-dynamics simulations. Experimentally, we find that the demagnetization time ($tau_{M}$) in films of $mathrm{Co_{2}FeAl}$ is almost independent of varying structural order, and that it is similar to that in elemental 3d ferromagnets. In contrast, the slower process of magnetization recovery, specified by $tau_{R}$, is found to occur on picosecond time scales, and is demonstrated to correlate strongly with the Gilbert damping parameter ($alpha$). Our results show that $mathrm{Co_{2}FeAl}$ is unique, in that it is the first material that clearly demonstrates the importance of the damping parameter in the remagnetization process. Based on these results we argue that for $mathrm{Co_{2}FeAl}$ the remagnetization process is dominated by magnon dynamics, something which might have general applicability.
120 - E. Burzo , I. Balazs , L. Chioncel 2010
We analyse the effects of doping Holmium impurities into the full-Heusler ferromagnetic alloy Co$_2$MnSi. Experimental results, as well as theoretical calculations within Density Functional Theory in the Local Density Approximation plus Hubbard U framework show that the holmium moment is aligned antiparallely to that of the transition metal atoms. According to the electronic structure calculations, substituting Ho on Co sites introduces a finite density of states in the minority spin gap, while substitution on the Mn sites preserves the half-metallic character.
We study the laser-induced torques in the antiferromagnet (AFM) Mn$_2$Au. We find that even linearly polarized light may induce laser-induced torques in Mn$_2$Au, i.e., the light does not have to be circularly polarized. The laser-induced torques in Mn$_2$Au are comparable in magnitude to those in the ferromagnets Fe, Co and FePt at optical frequencies. We also compute the laser-induced torques at terahertz (THz) frequencies and compare them to the spin-orbit torques (SOTs) excited by THz laser-pulses. We find the SOTs to be dominant at THz frequencies for the laser-field strengths used in experiments. Additionally, we show that the matrix elements of the spin-orbit interaction (SOI) can be used to add SOI only during the Wannier interpolation, which we call Wannier interpolation of SOI (WISOI). This technique allows us to perform the Wannier interpolation conveniently for many magnetization directions from a single set of Wannier functions.
Crystal structure prediction is a central problem of theoretical crystallography and materials science, which until mid-2000s was considered intractable. Several methods, based on either energy landscape exploration$^{1,2}$ or, more commonly, global optimization$^{3-8}$, largely solved this problem and enabled fully non-empirical computational materials discovery$^{9,10}$. A major shortcoming is that, to avoid expensive calculations of the entropy, crystal structure prediction was done at zero Kelvin and searched for the global minimum of the enthalpy, rather than free energy. As a consequence, high-temperature phases (especially those which are not quenchable to zero temperature) could be missed. Here we develop an accurate and affordable solution, enabling crystal structure prediction at finite temperatures. Structure relaxation and fully anharmonic free energy calculations are done by molecular dynamics with a force field (which can be anything from a parametric force field for simpler cases to a trained on-the-fly machine learning interatomic potential), the errors of which are corrected using thermodynamic perturbation theory to yield accurate ab initio results. We test the accuracy of this method on metals (probing the P-T phase diagram of Al and Fe), a refractory intermetallide (WB), and a significantly ionic ceramic compound (Earth-forming silicate MgSiO3 at pressures and temperatures of the Earths lower mantle). We find that the hcp-phase of aluminum has a wider stability field than previously thought, and the temperature-induced transition $alpha$-$beta$ in WB occurs at 2789 K. It is also found that iron has hcp structure at conditions of the Earths inner core, and the much debated (and important for constraining Earths thermal structure) Clapeyron slope of the post-perovskite phase transition in MgSiO3 is 5.88 MPa/K.
We revise critically existing approaches to evaluation of thermodynamic potentials within the Greens function calculations at finite electronic temperatures. We focus on the entropy and show that usual technical problems related to the multivalued nature of the complex logarithm can be overcome. This results in a simple expression for the electronic entropy, which does not require any contour integration in the complex energy plane. Properties of the developed formalism are discussed and its illustrating applications to selected model systems and to bcc iron with disordered local magnetic moments are presented as well.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا