Do you want to publish a course? Click here

Simulation of equatorial von Neumann measurements on GHZ states using nonlocal resources

174   0   0.0 ( 0 )
 Added by Jean-Daniel Bancal
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

Reproducing with elementary resources the correlations that arise when a quantum system is measured (quantum state simulation), allows one to get insight on the operational and computational power of quantum correlations. We propose a family of models that can simulate von Neumann measurements in the x-y plane of the Bloch sphere on n-partite GHZ states using only bipartite nonlocal boxes. For the tripartite and fourpartite states, the models use only bipartite nonlocal boxes; they can be translated into classical communication schemes with finite average communication cost.



rate research

Read More

Local operations with classical communication (LOCC) and separable operations are two classes of quantum operations that play key roles in the study of quantum entanglement. Separable operations are strictly more powerful than LOCC, but no simple explanation of this phenomenon is known. We show that, in the case of von Neumann measurements, the ability to interpolate measurements is an operational principle that sets apart LOCC and separable operations.
250 - Marek Zukowski 2008
Is is shown here that the simple test of quantumness for a single system of arXiv:0704.1962 (for a recent experimental realization see arXiv:0804.1646) has exactly the same relation to the discussion of to the problem of describing the quantum system via a classical probabilistic scheme (that is in terms of hidden variables, or within a realistic theory) as the von Neumann theorem (1932). The latter one was shown by Bell (1966) to stem from an assumption that the hidden variable values for a sum of two non-commuting observables (which is an observable too) have to be, for each individual system, equal to sums of eigenvalues of the two operators. One cannot find a physical justification for such an assumption to hold for non-commeasurable variables. On the positive side. the criterion may be useful in rejecting models which are based on stochastic classical fields. Nevertheless the example used by the Authors has a classical optical realization.
Understanding the relation between the different forms of inseparability in quantum mechanics is a longstanding problem in the foundations of quantum theory and has implications for quantum information processing. Here we make progress in this direction by establishing a direct link between quantum teleportation and Bell nonlocality. In particular, we show that all entangled states which are useful for teleportation are nonlocal resources, i.e. lead to deterministic violation of Bells inequality. Our result exploits the phenomenon of super-activation of quantum nonlocality, recently proved by Palazuelos, and suggests that the latter might in fact be generic.
We compute, for massive particles, the explicit Wigner rotations of one-particle states for arbitrary Lorentz transformations; and the explicit Hermitian generators of the infinite-dimensional unitary representation. For a pair of spin 1/2 particles, Einstein-Podolsky-Rosen-Bell entangled states and their behaviour under the Lorentz group are analysed in the context of quantum field theory. Group theoretical considerations suggest a convenient definition of the Bell states which is slightly different from the conventional assignment. The behaviour of Bell states under arbitrary Lorentz transformations can then be described succinctly. Reduced density matrices applicable to identical particles are defined through Yangs prescription. The von Neumann entropy of each of the reduced density matrix is Lorentz invariant; and its relevance as a measure of entanglement is discussed, and illustrated with an explicit example. A regularization of the entropy in terms of generalized zeta functions is also suggested.
271 - DaeKil Park 2019
The R{e}nyi and von Neumann entropies of various bipartite Gaussian states are derived analytically. We also discuss on the tripartite purification for the bipartite states when some particular conditions hold. The generalization to non-Gaussian states is briefly discussed.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا