A multiple-graphene-layer (MGL) structure with a stack of GLs and a highly conducting bottom GL on SiC substrate pumped by optical radiation is considered as an active region of terahertz (THz) and far infrared (FIR) lasers with external metal mirrors. The dynamic conductivity of the MGL structure is calculated as a function of the signal frequency, the number of GLs, and the optical pumping intensity. The utilization of optically pumped MGL structures might provide the achievement of lasing with the frequencies of about 1 THz at room temperature due to a high efficiency.
We experimentally observe the fast relaxation and relatively slow recombination dynamics of photogenerated electrons/holes in an epitaxial graphene-on-Si heterostructure under pumping with a 1550-nm, 80-fs pulsed fiber laser beam and probing with the corresponding terahertz (THz) beam generated by and synchronized with the pumping laser. The time-resolved electric-field intensity originating from the coherent terahertz photon emission is electro-optically sampled in total-reflection geometry. The Fourier spectrum from 1.8 to 5.2 THz agrees well the pumping photon spectrum. This result is attributed to amplified emission of THz radiation from the graphene sample stimulated by the THz probe beam, and provides evidence for the occurrence of negative dynamic conductivity in the terahertz spectral range.
We study the interaction between polarized terahertz (THz) radiation and micro-structured large-area graphene in transmission geometry. In order to efficiently couple the radiation into the two-dimensional material, a lateral periodic patterning of a closed graphene sheet by intercalation doping into stripes is chosen, yielding unequal transmittance of the radiation polarized parallel and perpendicular to the stripes. Indeed, a polarization contrast up to 20% is observed. The effect even increases up to 50% when removing graphene stripes in analogy to a wire grid polarizer. The polarization dependence is analyzed in a large frequency range from < 80 GHz to 3 THz, including the plasmon-polariton resonance. The results are in excellent agreement with theoretical calculations based on the electronic energy spectrum of graphene and the electrodynamics of the patterned structure.
Variable-field Hall measurements were performed on epitaxial graphene grown on Si-face and C-face SiC. The carrier transport involves essentially a single-type of carrier in few-layer graphene, regardless of SiC face. However, in multi-layer graphene (MLG) grown on C-face SiC, the Hall measurements indicated the existence of several groups of carriers with distinct mobilities. Electrical transport in MLG can be properly described by invoking three independent conduction channels in parallel. Two of these are n- and p-type, while the third involves nearly intrinsic graphene. The carriers in this lightly doped channel have significantly higher mobilities than the other two.
Epitaxial graphene mesas and ribbons are investigated using terahertz (THz) nearfield microscopy to probe surface plasmon excitation and THz transmission properties on the sub-wavelength scale. The THz near-field images show variation of graphene properties on a scale smaller than the wavelength, and excitation of THz surface waves occurring at graphene edges, similar to that observed at metallic edges. The Fresnel reflection at the substrate SiC/air interface is also found to be altered by the presence of graphene ribbon arrays, leading to either reduced or enhanced transmission of the THz wave depending on the wave polarization and the ribbon width.
The thermoelectric response of high mobility single layer epitaxial graphene on silicon carbide substrates as a function of temperature and magnetic field have been investigated. For the temperature dependence of the thermopower, a strong deviation from the Mott relation has been observed even when the carrier density is high, which reflects the importance of the screening effect. In the quantum Hall regime, the amplitude of the thermopower peaks is lower than a quantum value predicted by theories, despite the high mobility of the sample. A systematic reduction of the amplitude with decreasing temperature suggests that the suppression of the thermopower is intrinsic to Dirac electrons in graphene.