Do you want to publish a course? Click here

High energy photon interactions at the LHC

135   0   0.0 ( 0 )
 Publication date 2009
  fields
and research's language is English




Ask ChatGPT about the research

Experimental prospects for studying high-energy photon-photon and photon-proton interactions at the CERN Large Hadron Collider (LHC) are discussed. Cross sections are calculated for many electroweak and beyond the Standard Model processes. Selection strategies based on photon interaction tagging techniques are studied. Assuming a typical LHC multipurpose detector, various signals and their irreducible backgrounds are presented after applying acceptance cuts. Prospects are discussed for the Higgs boson search, detection of supersymmetric particles and of anomalous quartic gauge couplings, as well as for the top quark physics.



rate research

Read More

114 - K. Piotrzkowski 2002
Two-photon events at the LHC are characterized by the protons scattered at very small angles and the particles centrally produced via the photon-photon fusion. To select these events from the huge samples of generic pp interactions a detection of the scattered protons, or tagging two-photon interactions is necessary. It requires installation of the high-resolution position-sensitive detectors close to the proton beam and far from the interaction point. Efficient measurement of the forward-scattered protons will open a new field of studying high-energy photon-photon interactions at remarkable luminosity, reaching 1% of that in pp collisions. In this paper a few aspects of tagging two-photon interactions as well as several most exciting topics in the high-energy two-photon physics at the LHC are presented.
In this paper we investigate the $eta_c$ production by photon - photon and photon - hadron interactions in $pp$ and $pA$ collisions at the LHC energies. The inclusive and diffractive contributions for the $eta_c$ photoproduction are estimated using the nonrelativistic quantum chromodynamics (NRQCD) formalism. We estimate the rapidity and transverse momentum distributions for the $eta_c$ photoproduction in hadronic collisions at the LHC and present our estimate for the total cross sections at the Run 2 energies. A comparison with the predictions for the exclusive $eta_c$ photoproduction, which is a direct probe of the Odderon, also is presented.
The exclusive two-photon production at the LHC of pairs of W and Z bosons provides a novel and unique test-ground for the electroweak gauge boson sector. In particular it offers, thanks to high gamma-gamma center-of-mass energies, large and direct sensitivity to the anomalous quartic gauge couplings otherwise very difficult to investigate at the LHC. An initial analysis has been performed assuming leptonic decays and generic acceptance cuts. Simulation of a simple counting experiment has shown for the integrated luminosity of 10 fb-1 at least four thousand times larger sensitivity to the genuine quartic couplings, a_0^W, a_0^Z, a_C^W and a_C^Z, than those obtained at LEP. The impact of the unitarity constraints on the estimated limits has been studied using the dipole form-factors. Finally, differential distributions of the decay leptons have been provided to illustrate the potential for further improvements of the sensitivities.
154 - K. Piotrzkowski 2008
A significant fraction of pp collisions at the LHC will involve (quasi-real) photon interactions occurring at energies well beyond the electroweak energy scale. Hence, the LHC can to some extend be considered as a high-energy photon-photon or photon-proton collider. This offers a unique possibility for novel and complementary research where the available effective luminosity is small, relative to parton-parton interactions, but it is compensated by better known initial conditions and usually simpler final states. This is in a way a method for approaching some of the issues to be addressed by the future lepton collider. Such studies of photon interactions are possible at the LHC, thanks to the striking experimental signatures of events involving photon exchanges, in particular the presence of very forward scattered protons.
281 - X. Rouby 2008
Photon interactions at the LHC result in striking final states with much lower hadronic activity in the central detectors than for pp interactions. In addition, the elastic exchange of a photon leads to a proton scattered at almost zero-degree angle. Tagging photon interactions relies on either the use of large rapidity gaps or on the detection of the scattered proton using very forward detectors. The studies related to such detectors are presented, including their characterization, their acceptance and reconstruction performance. Limitations due to the LHC beamline misalignment and possible solutions are also given.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا