Scalable arrays of RF Paul traps in degenerate Si


Abstract in English

We report techniques for the fabrication of multi-zone linear RF Paul traps that exploit the machinability and electrical conductivity of degenerate silicon. The approach was tested by trapping and laser cooling 24Mg+ ions in two trap geometries: a single-zone two-layer trap and a multi-zone surface-electrode trap. From the measured ion motional heating rate we determine an electric field spectral density at the ions position of approximately 1E-10 (V/m)^2/Hz at a frequency of 1.125 MHz when the ion lies 40 micron above the trap surface. One application of these devices is controlled manipulation of atomic ion qubits, the basis of one form of quantum information processing.

Download