Optimizing the Multi-Photon Absorption Properties of N00N States


Abstract in English

In this paper we examine the N-photon absorption properties of N00N states, a subclass of path entangled number states. We consider two cases. The first involves the N-photon absorption properties of the ideal N00N state, one that does not include spectral information. We study how the N-photon absorption probability of this state scales with N. We compare this to the absorption probability of various other states. The second case is that of two-photon absorption for an N = 2 N00N state generated from a type II spontaneous down conversion event. In this situation we find that the absorption probability is both better than analogous coherent light (due to frequency entanglement) and highly dependent on the optical setup. We show that the poor production rates of quantum states of light may be partially mitigated by adjusting the spectral parameters to improve their two-photon absorption rates. This work has application to quantum imaging, particularly quantum lithography, where the N-photon absorbing process in the lithographic resist must be optimized for practical applications.

Download