Do you want to publish a course? Click here

Observation of an Efimov resonance in an ultracold mixture of atoms and weakly bound dimers

341   0   0.0 ( 0 )
 Added by Steven Knoop
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We discuss our recent observation of an atom-dimer Efimov resonance in an ultracold mixture of Cs atoms and Cs_2 Feshbach molecules [Nature Phys. 5, 227 (2009)]. We review our experimental procedure and present additional data involving a non-universal g-wave dimer state, to contrast our previous results on the universal s-wave dimer. We resolve a seeming discrepancy when quantitatively comparing our experimental findings with theoretical results from effective field theory.



rate research

Read More

We report on the observation of an elementary exchange process in an optically trapped ultracold sample of atoms and Feshbach molecules. We can magnetically control the energetic nature of the process and tune it from endoergic to exoergic, enabling the observation of a pronounced threshold behavior. In contrast to relaxation to more deeply bound molecular states, the exchange process does not lead to trap loss. We find excellent agreement between our experimental observations and calculations based on the solutions of three-body Schrodinger equation in the adiabatic hyperspherical representation. The high efficiency of the exchange process is explained by the halo character of both the initial and final molecular states.
258 - S. Knoop , F. Ferlaino , M. Mark 2008
The field of few-body physics has originally been motivated by understanding nuclear matter. New model systems to experimentally explore few-body quantum systems can now be realized in ultracold gases with tunable interactions. Albeit the vastly different energy regimes of ultracold and nuclear matter (peV as compared to MeV), few-body phenomena are universal for near-resonant two-body interactions. Efimov states represent a paradigm for universal three-body states, and evidence for their existence has been obtained in measurements of three-body recombination in an ultracold gas of caesium atoms. Interacting samples of halo dimers can provide further information on universal few-body phenomena. Here we study interactions in an optically trapped mixture of such halo dimers with atoms, realized in a caesium gas at nanokelvin temperatures. We observe an atom-dimer scattering resonance, which we interpret as being due to a trimer state hitting the atom-dimer threshold. We discuss the close relation of this observation to Efimovs scenario, and in particular to atom-dimer Efimov resonances.
In 1970 V. Efimov predicted a puzzling quantum-mechanical effect that is still of great interest today. He found that three particles subjected to a resonant pairwise interaction can join into an infinite number of loosely bound states even though each particle pair cannot bind. Interestingly, the properties of these aggregates, such as the peculiar geometric scaling of their energy spectrum, are universal, i.e. independent of the microscopic details of their components. Despite an extensive search in many different physical systems, including atoms, molecules and nuclei, the characteristic spectrum of Efimov trimer states still eludes observation. Here we report on the discovery of two bound trimer states of potassium atoms very close to the Efimov scenario, which we reveal by studying three-particle collisions in an ultracold gas. Our observation provides the first evidence of an Efimov spectrum and allows a direct test of its scaling behaviour, shedding new light onto the physics of few-body systems.
506 - I. Herrera , Y. Wang , P. Michaux 2014
We report on the design, fabrication and characterization of magnetic nanostructures to create a lattice of magnetic traps with sub--micron period for trapping ultracold atoms. These magnetic nanostructures were fabricated by patterning a Co/Pd multilayered magnetic film grown on a silicon substrate using high precision e-beam lithography and reactive ion etching. The Co/Pd film was chosen for its small grain size and high remanent magnetization and coercivity. The fabricated structures are designed to magnetically trap $^{87}$Rb atoms above the surface of the magnetic film with 1D and 2D (triangular and square) lattice geometries and sub-micron period. Such magnetic lattices can be used for quantum tunneling and quantum simulation experiments, including using geometries and periods that may be inaccessible with optical lattice.
We investigate experimentally the entropy transfer between two distinguishable atomic quantum gases at ultralow temperatures. Exploiting a species-selective trapping potential, we are able to control the entropy of one target gas in presence of a second auxiliary gas. With this method, we drive the target gas into the degenerate regime in conditions of controlled temperature by transferring entropy to the auxiliary gas. We envision that our method could be useful both to achieve the low entropies required to realize new quantum phases and to measure the temperature of atoms in deep optical lattices. We verified the thermalization of the two species in a 1D lattice.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا