Do you want to publish a course? Click here

VERITAS observations of HESS J0632+057

141   0   0.0 ( 0 )
 Added by Gernot Maier
 Publication date 2009
  fields Physics
and research's language is English
 Authors G.Maier




Ask ChatGPT about the research

HESS J0632+057 is one of only two unidentified high energy gamma-ray sources which appear to be point-like in nature. It is possibly associated with the massive star MWC 148 and has been suggested to resemble known TeV binary systems like LS I +61 303 or LS 5039. These binaries are rare and extreme (only three TeV binaries are known to date), and their gamma-ray emission mechanism has not been understood. HESS J0632+057 was observed by VERITAS, an array of four 12 m imaging atmospheric Cherenkov telescopes, in 2006, 2008 and 2009. Based on these observations we present evidence for variability in the high energy gamma-ray emission from HESS J0632+057.



rate research

Read More

HESS J0632+057 is a gamma-ray binary composed of a compact object and a Be star, with an orbital period of about 315 days. The actual nature of its non-thermal emission, spanning from radio to very-high-energy (VHE, >100 GeV) gamma-rays, is currently unknown. In this contribution we will present the results of a set of simultaneous observations performed by the NuSTAR X-ray telescope and the VERITAS observatory. The combination of hard X-rays (3-30 keV) and VHE gamma-rays (0.1-5 TeV) provide valuable information for the understanding of the radiative processes occurring in the system. The spectral energy distributions (SED) derived from the observations are used to probe the pulsar scenario, in which the system is powered by a rapidly rotating neutron star. The non-thermal emission is produced by the particles accelerated at the shock formed by the collision of the pulsar and stellar winds. As a results of the model fitting, we constrain the relation between the pulsar spin-down luminosity and the magnetization of the pulsar wind.
147 - G. Maier , O.Blanch , D.Hadasch 2019
The gamma-ray binary HESS J0632+057 has been observed at very-high energies (E $>$ 100 GeV) for more than ten years by the major systems of imaging atmospheric Cherenkov telescopes. We present a summary of results obtained with the H.E.S.S., MAGIC, and VERITAS experiments based on roughly 440 h of observations in total. This includes a discussion of an unusually bright TeV outburst of HESS J0632+057 in January 2018. The updated gamma-ray light curve now covers all phases of the orbital period with significant detections in almost all orbital phases. Results are discussed in context with simultaneous observations with the X-ray Telescope onboard the Neil Gehrels Swift Observatory.
HESS J0632+057 is an eccentric gamma-ray Be binary that produces non-thermal radio, X-rays, GeV, and very high-energy gamma rays. The non-thermal emission of HESS J0632+057 is modulated with the orbital period, with a dominant maximum before apastron passage. The nature of the compact object in HESS J0632+057 is not known, although it has been proposed to be a young pulsar as in PSR B1259-63, the only gamma-ray emitting high-mass binary known to host a non-accreting pulsar. In this Letter, we present hydrodynamical simulations of HESS J0632+057 in the context of a pulsar and a stellar wind interacting in an eccentric binary, and propose a scenario for the non-thermal phenomenology of the source. In this scenario, the non-thermal activity before and around apastron is linked to the accumulation of non-thermal particles in the vicinity of the binary, and the sudden drop of the emission before apastron is produced by the disruption of the two-wind interaction structure, allowing these particles to efficiently escape. In addition to providing a framework to explain the non-thermal phenomenology of the source, this scenario predicts extended, moving X-ray emitting structures similar to those observed in PSR B1259-63.
60 - A. Archer , W. Benbow , R. Bird 2019
HESS J0632+057 is a gamma-ray binary composed of a compact object orbiting a Be star with a period of about $315$ days. Extensive X-ray and TeV gamma-ray observations have revealed a peculiar light curve containing two peaks, separated by a dip. We present the results of simultaneous observations in hard X-rays with NuSTAR and in TeV gamma-rays with VERITAS, performed in November and December 2017. These observations correspond to the orbital phases $phiapprox0.22$ and $0.3$, where the fluxes are rising towards the first light-curve peak. A significant variation of the spectral index from 1.77$pm$0.05 to 1.56$pm$0.05 is observed in the X-ray data. The multi-wavelength spectral energy distributions (SED) derived from the observations are interpreted in terms of a leptonic model, in which the compact object is assumed to be a pulsar and non-thermal radiation is emitted by high-energy electrons accelerated at the shock formed by the collision between the stellar and pulsar wind. The results of the SED fitting show that our data can be consistently described within this scenario, and allow us to estimate the magnetization of the pulsar wind at the location of the shock formation. The constraints on the pulsar-wind magnetization provided by our results are shown to be consistent with those obtained from other systems.
We study changes in the $gamma$--ray intensity at very high energies observed from the $gamma$--ray binary HESS J0632+057. Publicly available data collected by Cherenkov telescopes were examined by means of a simple method utilizing solely the number of source and background events. Our results point to time variability in signal from the selected object consistent with periodic modulation of the source intensity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا