In this work we will develop the canonical structure of Podolskys generalized electrodynamics on the null-plane. This theory has second-order derivatives in the Lagrangian function and requires a closer study for the definition of the momenta and canonical Hamiltonian of the system. On the null-plane the field equations also demand a different analysis of the initial-boundary value problem and proper conditions must be chosen on the null-planes. We will show that the constraint structure, based on Dirac formalism, presents a set of second-class constraints, which are exclusive of the analysis on the null-plane, and an expected set of first-class constraints that are generators of a U(1) group of gauge transformations. An inspection on the field equations will lead us to the generalized radiation gauge on the null-plane, and Dirac Brackets will be introduced considering the problem of uniqueness of these brackets under the chosen initial-boundary condition of the theory.