We show that using parameters consistent with the charge symmetry violating difference between the strong nn and pp scattering lengths provides significant constraints on the amplitude for the dd -> alpha pi0 reaction.
We report the first observation of the charge symmetry breaking d + d -> 4He + pi0 reaction near threshold at the Indiana University Cyclotron Facility. Kinematic reconstruction permitted the separation of 4He + pi0 events from double radiative capture 4He + gamma + gamma events. We measured total cross sections for neutron pion production of 12.7 +- 2.2 pb at 228.5 MeV and 15.1 +- 3.1 pb at 231.8 MeV. The uncertainty is dominated by statistical errors.
Background: Modern ab initio theory combined with high-quality nucleon-nucleon (NN) and three-nucleon (3N) interactions from chiral effective field theory (EFT) can provide a predictive description of low-energy light-nuclei reactions relevant for astrophysics and fusion-energy applications. However, the high cost of computations has so far impeded a complete analysis of the uncertainty budget of such calculations. Purpose: Starting from NN potentials up to fifth order (N4LO) combined with leading-order 3N forces, we study how the order-by-order convergence of the chiral expansion and confidence intervals for the 3N contact and contact-plus-one-pion-exchange low-energy constants (cE and cD) contribute to the overall uncertainty budget of many-body calculations of neutron-He elastic scattering. Methods: We compute structure and reaction observables for three-, four- and five-nucleon systems within the ab initio frameworks of the no-core shell model an no-core shell model with continuum. Using a small set of design runs, we construct a Gaussian process model (GPM) that acts as a statistical emulator for the theory. With this, we gain insight into how uncertainties in the 3N low-energy constants propagate throughout the calculation and determine the Bayesian posterior distribution of these parameters with Markov-Chain Monte-Carlo.
This letter reports a first quantitative analysis of the contribution of higher partial waves in the charge symmetry breaking reaction $dd to {}^4text{He}pi^0$ using the WASA-at-COSY detector setup at an excess energy of $Q = 60$ MeV. The determined differential cross section can be parametrized as $text{d}sigma/text{d}Omega = a + bcos^{2}theta^*$, where $theta^*$ is the production angle of the pion in the center-of-mass coordinate system, and the results for the parameters are $a = left(1.55 pm 0.46 (text{stat}) ^{+0.32}_{-0.8} (text{syst}) right)$ pb/sr and $b = left(13.1 pm 2.1 (text{stat}) ^{+1.0}_{-2.7} (text{syst})right)$ pb/sr. The data are compatible with vanishing p-waves and a sizable d-wave contribution. This finding should strongly constrain the contribution of the $Delta$ isobar to the $dd to {}^4text{He}pi^0$ reaction and is, therefore, crucial for a quantitative understanding of quark mass effects in nuclear production reactions.
We review the major progress of the past decade concerning our understanding of the nucleon-nucleon interaction. The focus is on the low-energy region (below pion production threshold), but a brief outlook towards higher energies is also given. The items discussed include charge-dependence, the precise value of the $pi NN$ coupling constant, phase shift analysis and high-precision NN data and potentials. We also address the issue of a proper theory of nuclear forces. Finally, we summarize the essential open questions that future research should be devoted to.
Charge symmetry breaking (CSB) observables are a suitable experimental tool to examine effects induced by quark masses on the nuclear level. Previous high precision data from TRIUMF and IUCF are currently used to develop a consistent description of CSB within the framework of chiral perturbation theory. In this work the experimental studies on the reaction dd->4He{pi}0 have been extended towards higher excess energies in order to provide information on the contribution of p-waves in the final state. For this, an exclusive measurement has been carried out at a beam momentum of p=1.2 GeV/c using the WASA-at-COSY facility. The total cross section amounts to sigma(tot) = (118 +- 18(stat) +- 13(sys) +- 8(ext)) pb and first data on the differential cross section are consistent with s-wave pion production.