No Arabic abstract
Proper motion measurements of the cool and ultracool populations in the Upper Scorpius OB association are crucial to confirm membership and to identify possible run-away objects. We cross-match samples of photometrically selected and spectroscopically confirmed cool and ultracool (K5<SpT<M8.5) candidate members in the Upper Scorpius OB association using the literature and the USNO-B and the UCAC2 catalogues. 251 of these objects have a USNO-B and/or UCAC2 counterpart with proper motion measurements. A significant fraction (19 objects, 7.6+-1.8%) of spectroscopically confirmed young objects show discrepant proper motion. They must either belong to unidentified coincident foreground associations, or originate from neighboring star forming regions or have recently experienced dynamical interactions within the association. The observed accretor and disc frequencies are lower among outliers, but with only 19 objects it is unreliable to draw firm statistical conclusions. Finally, we note that transverse velocities of very low mass members are indistinguishable from those of low mass members within 4km/s
We present detailed modeling of the spatial distributions of gas and dust in 57 circumstellar disks in the Upper Scorpius OB Association observed with ALMA at sub-millimeter wavelengths. We fit power-law models to the dust surface density and CO $J$ = 3-2 surface brightness to measure the radial extent of dust and gas in these disks. We found that these disks are extremely compact: the 25 highest signal-to-noise disks have a median dust outer radius of 21 au, assuming an $R^{-1}$ dust surface density profile. Our lack of CO detections in the majority of our sample is consistent with these small disk sizes assuming the dust and CO share the same spatial distribution. Of seven disks in our sample with well-constrained dust and CO radii, four appear to be more extended in CO, although this may simply be due to higher optical depth of the CO. Comparison of the Upper Sco results with recent analyses of disks in Taurus, Ophiuchus, and Lupus suggests that the dust disks in Upper Sco may be $sim3$ times smaller in size than their younger counterparts, although we caution that a more uniform analysis of the data across all regions is needed. We discuss the implications of these results for disk evolution.
We present results of a spectroscopic survey for new K- and M-type members of Scorpius-Centaurus (Sco-Cen), the nearest OB Association (~100-200 pc). Using an X-ray, proper motion and color-magnitude selected sample, we obtained spectra for 361 stars, for which we report spectral classifications and Li and Halpha equivalent widths. We identified 156 new members of Sco-Cen, and recovered 51 previously published members. We have combined these with previously known members to form a sample of 493 solar-mass (~0.7-1.3 Msun) members of Sco-Cen. We investigated the star-formation history of this sample, and re-assessed the ages of the massive main-sequence turn-off and the G-type members in all three subgroups. We performed a census for circumstellar disks in our sample using WISE infrared data and find a protoplanetary disk fraction for K-type stars of 4.4$^{+1.6}_{-0.9}$% for Upper Centaurus-Lupus and Lower Centaurus-Crux at ~16 Myr and 9.0$^{+4.0}_{-2.2}$% for Upper Scorpius at ~10 Myr. These data are consistent with a protoplanetary disk e-folding timescale of ~4-5 Myr for ~1 Msun stars, twice that previously quoted (Mamajek 2009), but consistent with the Bell et al. revised age scale of young clusters. Finally, we construct an age map of Scorpius-Centaurus which clearly reveals substructure consisting of concentrations of younger and older stars. We find evidence for strong age gradients within all three subgroups. None of the subgroups are consistent with being simple, coeval populations which formed in single bursts, but likely represents a multitude of smaller star formation episodes of hundreds to tens of stars each.
We aim at constraining evolutionary models at low mass and young ages by identifying interesting transiting system members of the nearest OB association to the Sun, Upper Scorpius, targeted by the Kepler mission. We produced light curves for M dwarf members of the USco region surveyed during the second campaign of the Kepler K2 mission. We identified by eye a transiting system, UScoJ161630.68-251220.1 (=EPIC203710387) with a combined spectral type of M5.25 whose photometric, astrometric, and spectroscopic properties makes it a member of USco. We conducted an extensive photometric and spectroscopic follow-up of this transiting system with a suite of telescopes and instruments to characterise the properties of each component of the system. We calculated a transit duration of about 2.42 hours occuring every 2.88 days with a slight difference in transit depth and phase between the two components. We estimated a mass ratio of 0.922+/-0.015 from the semi-amplitudes of the radial velocity curves for each component. We derived masses of 0.091+/-0.005 Msun and 0.084+/-0.004 Msun,radii of 0.388+/-0.008 Rsun and 0.380+/-0.008 Rsun, luminosities of log(L/Lsun)=-2.020 (-0.121+0.099) dex and -2.032 (-0.121+0.099) dex, and effective temperatures of 2901 (-172+199) K and 2908 (-172+199) K for the primary and secondary, respectively. We present a complete photometric and radial velocity characterisation of the least massive double-line eclipsing binary system in the young USco association with two components close to the stellar/substellar limit. This system fills in a gap between the least massive eclipsing binaries in the low-mass and substellar regimes at young ages and represents an important addition to constrain evolutionary models at young ages.
The Chamaeleon star-forming region has been extensively studied in the last decades. However, most studies have been confined to the densest parts of the clouds. In a previous paper, we analysed the kinematical properties of the spectroscopically confirmed population of the Chamaeleon I and II clouds. We now report on a search for new kinematical candidate members to the Chamaeleon I and II moving groups using available information from public databases and catalogues. Our candidates were initially selected in an area of 3 deg around each cloud on the basis of proper motions and colours from the UCAC4 Catalog. The SEDs of the objects were constructed using photometry retrieved from the Virtual Observatory and other resources, and fitted to models of stellar photospheres to derive effective temperatures, gravity values, and luminosities. Masses and ages were estimated by comparison with theoretical evolutionary tracks in a Hertzprung-Russell diagram. We have identified 51 and 14 candidate members to the Chamaeleon I and II moving groups, respectively, of which 17 and 1, respectively, are classified as probable young stars (ages < 20 Myr) according to our analysis. Another object in Chamaeleon I located slightly above the 1 Myr isochrone is classified as a possible young star. All these objects are diskless stars with masses in the range 0.3M-1.4MSun, and ages consistent with those reported for the corresponding confirmed members. They tend to be located at the boundaries of or outside the dark clouds, preferably to the north-east and south-east in the case of Chamaeleon I, and to the north-east in the case of Chamaeleon II. We conclude that the kinematical population of Chamaeleon I and II could be larger and spread over a larger area of the sky than suggested by previous studies.
We aim at identifying very low-mass isolated planetary-mass member candidates in the nearest OB association to the Sun, Upper Scorpius (145 pc; 5-10 Myr), to constrain the form and shape of the luminosity function and mass spectrum in this regime. We conducted a deep multi-band ($Y$=21.2, $J$=20.5, $Z$=22.0 mag) photometric survey of six square degrees in the central region of Upper Scorpius. We extend the current sequence of astrometric and spectroscopic members by about two magnitudes in $Y$ and one magnitude in $J$, reaching potentially T-type free-floating members in the association with predicted masses below 5 Jupiter masses, well into the planetary-mass regime. We extracted a sample of 57 candidates in this area and present infrared spectroscopy confirming two of them as young L-type members with characteristic spectral features of 10 Myr-old brown dwarfs. Among the 57 candidates, we highlight 10 new candidates fainter than the coolest members previously confirmed spectroscopically. We do not see any obvious sign of decrease in the mass spectrum of the association, suggesting that star processes can form substellar objects with masses down to 4-5 Jupiter masses.