Do you want to publish a course? Click here

Strong valence fluctuation in the quantum critical heavy fermion superconductor beta-YbAlB4: A hard x-ray photoemission study

165   0   0.0 ( 0 )
 Added by Mario Okawa
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

Electronic structures of the quantum critical superconductor beta-YbAlB4 and its polymorph alpha-YbAlB4 are investigated by using bulk-sensitive hard x-ray photoemission spectroscopy. From the Yb 3d core level spectra, the values of the Yb valence are estimated to be ~2.73 and ~2.75 for alpha- and beta-YbAlB4, respectively, thus providing clear evidence for valence fluctuations. The valence band spectra of these compounds also show Yb2+ peaks at the Fermi level. These observations establish an unambiguous case of a strong mixed valence at quantum criticality for the first time among heavy fermion systems, calling for a novel scheme for a quantum critical model beyond the conventional Doniach picture in beta-YbAlB4.



rate research

Read More

We present a detailed quantum oscillation study of the Fermi surface of the recently discovered Yb-based heavy fermion superconductor beta-YbAlB4 . We compare the data, obtained at fields from 10 to 45 Tesla, to band structure calculations performed using the local density approximation. Analysis of the data suggests that f-holes participate in the Fermi surface up to the highest magnetic fields studied. We comment on the significance of these findings for the unconventional superconducting properties of this material.
The superconducting order parameter of the first heavy-fermion superconductor CeCu2Si2 is currently under debate. A key ingredient to understand its superconductivity and physical properties is the quasiparticle dispersion and Fermi surface, which remains elusive experimentally. Here we present measurements from angle-resolved photoemission spectroscopy. Our results emphasize the key role played by the Ce 4f electrons for the low-temperature Fermi surface, highlighting a band-dependent conduction-f electron hybridization. In particular, we find a very heavy quasi-two-dimensional electron band near the bulk X point and moderately heavy three-dimensional hole pockets near the Z point. Comparison with theoretical calculations reveals the strong local correlation in this compound, calling for further theoretical studies. Our results provide the electronic basis to understand the heavy fermion behavior and superconductivity; implications for the enigmatic superconductivity of this compound are also discussed.
We report 125Te-NMR studies on a newly discovered heavy fermion superconductor UTe2. Using a single crystal, we have measured the 125Te-NMR Knight shift K and spin-lattice relaxation rate 1/T1 for fields along the three orthorhombic crystal axes. The data confirm a moderate Ising anisotropy for both the static (K) and dynamical susceptibilities (1/T1) in the paramagnetic state above about 20 K. Around 20 K, however, we have observed a sudden loss of NMR spin-echo signal due to sudden enhancement of the NMR spin-spin relaxation rate 1/T2, when the field is applied along the easy axis of magnetization (=a axis). This behavior suggests the development of longitudinal magnetic fluctuations along the a axis at very low frequencies below 20 K.
167 - Y. Matsumoto , K. Kuga , Y. Karaki 2009
$beta$-YbAlB$_4$ is the first Yb-based heavy fermion superconductor with $T_{rm c} = 80$ mK. We measured low temperature magnetization of high-purity single crystals down to $T=$ 25 mK. The measurements have revealed a considerable amount of volume fractions of the superconductivity and the upper critical field $B_{c2}$ curve under field along the c axis, consistent with the previous results. In the normal state, the previously observed divergent behavior in the temperature dependence of the magnetization has been confirmed using higher quality samples and under a low field of 22 mT. In addition, the measurements have revealed a power law behavior, namely, $dM/dTpropto T^{3/2}$, which has a slightly higher exponent than the previous results.
We present the high-precision magnetization data of the valence fluctuating heavy fermion superconductor $beta$-YbAlB$_4$ in a wide temperature range from 0.02 K to 320 K spanning four orders of magnitude. We made detailed analyses of the $T/B$ scaling of the magnetization, and firmly confirmed the unconventional zero-field quantum criticality (QC) without tuning. We examined other possible scaling relationship such as $T/(B-B_c)^{delta}$ scaling, and confirmed that $delta = 1$ provides the best quality of the fit with an upper bound on the critical magnetic field $vert B_c vert <0.2$~mT. We further discuss the heavy Fermi-liquid component of the magnetization after subtracting the QC component estimated based on the $T/B$ scaling. The temperature dependence of the heavy Fermi-liquid component is found very similar to the magnetization of the polymorph $alpha$-YbAlB$_4$. In addition, the heavy Fermi-liquid component is suppressed in the magnetic field above $sim$ 5 T as in $alpha$-YbAlB$_4$. This was also confirmed by the magnetization measurements up to $sim 50$ T for both $alpha$- and $beta$-YbAlB$_4$. Interestingly, the detailed analyses revealed that the only a part of $f$ electrons participates in the zero-field QC and the heavy fermion behavior. We also present a temperature - magnetic field phase diagram of ybal to illustrate how the characteristic temperature and field scales evolves near the QC.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا