No Arabic abstract
From the study of X-ray light curve and color-color diagram of the low mass X-ray binary GRS 1915+105, observed by on board proportional counter array (PCA) of Rossi X-ray Timing Explorer (RXTE), we discover a new class of variability, which we name $epsilon$ class. We have studied observations between MJD 51200 and 51450. The class shows unusual periodic-like variation in count rate during rise time of two x-ray bursts. The class take place when the source is in radio quiet state. The huge expansion in color-intensity diagram indicates the class to be an adjusting stage of increasing accretion rate. Spectral analysis shows that during lower count rate, the spectrum is hard power-law dominating, indicating similarity towards hard intermediate state, and during higher count rate, the spectrum is thermal disk blackbody component dominating, indicating similarity towards high soft state. Hence, this class is important in understanding the way of state transition leads to change in accretion rate. No signature of any low frequency quasi periodic oscillation was seen in this class. We also find that when the class was showing higher counts, the average RMS amplitude is significantly high for high energy band (14-60 keV) compared to low energy band (2-8 keV).
We estimate the black hole spin parameter in GRS 1915+105 using the continuum-fitting method with revised mass and inclination constraints based on the very long baseline interferometric parallax measurement of the distance to this source. We fit Rossi X-ray Timing Explorer observations selected to be accretion disk-dominated spectral states as described in McClinotck et al. (2006) and Middleton et al. (2006), which previously gave discrepant spin estimates with this method. We find that, using the new system parameters, the spin in both datasets increased, providing a best-fit spin of $a_*=0.86$ for the Middleton et al. data and a poor fit for the McClintock et al. dataset, which becomes pegged at the BHSPEC model limit of $a_*=0.99$. We explore the impact of the uncertainties in the system parameters, showing that the best-fit spin ranges from $a_*= 0.4$ to 0.99 for the Middleton et al. dataset and allows reasonable fits to the McClintock et al. dataset with near maximal spin for system distances greater than $sim 10$ kpc. We discuss the uncertainties and implications of these estimates.
Most models of the low frequency quasi periodic oscillations (QPOs) in low-mass X-ray binaries (LMXBs) explain the dynamical properties of those QPOs. On the other hand, in recent years reverberation models that assume a lamp-post geometry have been successfull in explaining the energy-dependent time lags of the broad-band noise component in stellar mass black-holes and active galactic nuclei. We have recently shown that Comptonisation can explain the spectral-timing properties of the kilo-hertz (kHz) QPOs observed in neutron star (NS) LMXBs. It is therefore worth exploring whether the same family of models would be as successful in explaining the low-frequency QPOs. In this work, we use a Comptonisation model to study the frequency dependence of the phase lags of the type-C QPO in the BH LMXB GRS 1915+105. The phase lags of the QPO in GRS 1915+105 make a transition from hard to soft at a QPO frequency of around 1.8 Hz. Our model shows that at high QPO frequencies a large corona of ~ 100-150 R_g covers most of the accretion disc and makes it 100% feedback dominated, thus producing soft lags. As the observed QPO frequency decreases, the corona gradually shrinks down to around 3-17 R_g, and at 1.8 Hz feedback onto the disc becomes inefficient leading to hard lags. We discuss how changes in the accretion geometry affect the timing properties of the type-C QPO.
Disk and wind signatures are seen in the soft state of Galactic black holes, while the jet is seen in the hard state. Here we study the disk-wind connection in the $rho$ class of variability in GRS 1915+105 using a joint NuSTAR-Chandra observation. The source shows 50 sec limit cycle oscillations. By including new information provided by the reflection spectrum, and using phase-resolved spectroscopy, we find that the change in the inner disk inferred from the blackbody emission is not matched by reflection measurements. The latter is almost constant, independent of the continuum model. The two radii are comparable only if the disk temperature color correction factor changes, an effect that could be due to the changing opacity of the disk caused by changes in metal abundances. The disk inclination is similar to that inferred from the jet axis, and oscillates by ~10 deg. The simultaneous Chandra data show the presence of two wind components with velocities between 500-5000 km/s, and possibly two more with velocities reaching 20,000 km/s (~0.06 c). The column densities are ~5e22 cm$^{-2}$. An upper limit to the wind response time of 2 sec is measured, implying a launch radius of <6e10 cm. The changes in wind velocity and absorbed flux require the geometry of the wind to change during the oscillations, constraining the wind to be launched from a distance of 290 - 1300 rg from the black hole. Both datasets support fundamental model predictions in which a bulge originates in the inner disk and moves outward as the instability progresses.
We report the discovery in the Rossi X-Ray Timing Explorer data of GRS 1915+105 of a second quasi-periodic oscillation at 34 Hz, simultaneous with that observed at 68 Hz in the same observation. The data corresponded to those observations from 2003 where the 68-Hz oscillation was very strong. The significance of the detection is 4.2 sigma. These observations correspond to a very specific position in the colour-colour diagram for GRS 1915+105, corresponding to a harder spectrum compared to those where a 41 Hz oscillation was discovered. We discuss the possible implications of the new pair of frequencies comparing them with the existing theoretical models.
GRS 1915+105 shows at least twelve distinct classes of light curves. By analysing the data obtained from Indian X-ray Astronomy Experiment (IXAE) instrument aboard IRS-P3 satellite, we show that in at least two days, transitions between one class to another were observed. In these days the so-called $kappa$ class went to $rho$ class and $chi$ class went to $rho$ class. In the frequency-time plane such transitions exhibited change in quasi-periodic oscillation (QPO) frequency. We could detect that low-frequency QPOs can occur in anticipation of a class transition several hundred minutes before the actual transition