Do you want to publish a course? Click here

Pre-Main Sequence variables in the VMR-D : identification of T Tauri-like accreting protostars through Spitzer-IRAC variability

116   0   0.0 ( 0 )
 Added by Massimo De Luca
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a study of the infrared variability of young stellar objects by means of two Spitzer-IRAC images of the Vela Molecular Cloud D (VMR-D) obtained in observations separated in time by about six months. By using the same space-born IR instrumentation, this study eliminates all the unwanted effects usually unavoidable when comparing catalogs obtained from different instruments. The VMR-D map covers about 1.5 square deg. of a site where star formation is actively ongoing. We are interested in accreting pre-main sequence variables whose luminosity variations are due to intermittent events of disk accretion (i.e. active T Tauri stars and EXor type objects). The variable objects have been selected from a catalog of more than 170,000 sources detected at a S/N ratio > 5. We searched the sample of variables for ones whose photometric properties are close to those of known EXors. These latter are monitored in a more systematic way than T Tauri stars and the mechanisms that regulate the observed phenomenology are exactly the same. Hence the modalities of the EXor behavior is adopted as driving criterium for selecting variables in general. We selected 19 bona fide candidates that constitute a well-defined sample of new variable targets for further investigation. Out of these, 10 sources present a Spitzer MIPS 24 micron counterpart, and have been classified as 3 Class I, 5 flat spectrum and 2 Class II objects, while the other 9 sources have spectral energy distribution compatible with phases older than Class I. This is consistent with what is known about the small sample of known EXors, and suggests that the accretion flaring or EXor stage might come as a Class I/II transition. We present also new prescriptions that can be useful in future searches for accretion variables in large IR databases.



rate research

Read More

Pre-main sequence (PMS) stars evolve into main sequence (MS) phase over a period of time. Interestingly, we found a scarcity of studies in existing literature that examines and attempts to better understand the stars in PMS to MS transition phase. The purpose of the present study is to detect such rare stars, which we named as Transition Phase (TP) candidates - stars evolving from the PMS to the MS phase. We identified 98 TP candidates using photometric analysis of a sample of 2167 classical Be (CBe) and 225 Herbig Ae/Be (HAeBe) stars. This identification is done by analyzing the near- and mid-infrared excess and their location in the optical color-magnitude diagram. The age and mass of 58 of these TP candidates are determined to be between 0.1-5 Myr and 2-10.5 M$_odot$, respectively. The TP candidates are found to possess rotational velocity and color excess values in between CBe and HAeBe stars, which is reconfirmed by generating a set of synthetic samples using the machine learning approach.
We present infrared photometry obtained with the IRAC camera on the Spitzer Space Telescope of a sample of 82 pre-main sequence stars and brown dwarfs in the Taurus star-forming region. We find a clear separation in some IRAC color-color diagrams between objects with and without disks. A few ``transition objects are noted, which correspond to systems in which the inner disk has been evacuated of small dust. Separating pure disk systems from objects with remnant protostellar envelopes is more difficult at IRAC wavelengths, especially for objects with infall at low rates and large angular momenta. Our results generally confirm the IRAC color classification scheme used in previous papers by Allen et al. and Megeath et al. to distinguish between protostars, T Tauri stars with disks, and young stars without (inner) disks. The observed IRAC colors are in good agreement with recent improved disk models, and in general accord with models for protostellar envelopes derived from analyzing a larger wavelength region. We also comment on a few Taurus objects of special interest. Our results should be useful for interpreting IRAC results in other, less well-studied star-forming regions.
Context: The pre-main sequence evolution is often simplified by choosing classical initial models. These have large initial radii and sufficient uniform contraction to make them fully convective. Contrary to that, real stars are born as small protostellar seeds in collapsing molecular clouds and obtain their final mass by means of accretion. Aims: We aim to constrain the input physics of accretion on protostellar seeds with observed spectroscopic parameters and stellar pulsations of young stellar objects and pre-main sequence stars. Methods: We conducted a literature search for spectroscopic samples of young stellar objects and pre-main sequence stars including all previously known pulsators. The sample size of pulsating pre-main sequence stars is increased by analysing TESS observations and presenting discoveries in CoRoT data. We employ MESA and GYRE to calculate evolutionary tracks of accreting protostellar seeds in a constant accretion scenario, the subsequent pre-main sequence evolution, and their pulsation properties. The results are then compared with observations to constrain the input physics. Results: We discuss 16 formerly unknown pulsating pre-main sequence stars and candidates that are either of SPB, $delta$ Scuti,$gamma$ Doradus or $delta$ Scuti - $gamma$ Doradus hybrid type. We find that evolutionary tracks with a mass accretion rate of $5times10^{-6} M_odot/{rm yr}$ and fraction of injected accretion energy of $beta=0.1$ provide the best results in enveloping the spectroscopic parameters of pre-main sequence stars in a constant accretion scenario. The calculated instability regions constrain the atmospheric boundary conditions to Eddington Gray atmospheres; we discuss the future potential for additional constraints by instability regions that are dependent on radial order. We present a possible candidate for pulsations in M-type young stellar objects.
Most existing studies of the angular momentum evolution of young stellar populations have focused on the youngest (1-3 Myr) T Tauri stars. In contrast, the angular momentum distributions of older T Tauri stars (4-10 Myr) have been less studied, even though they hold key insight to understanding stellar angular momentum evolution at a time when protoplanetary disks have largely dissipated and when models therefore predict changes in the rotational evolution that can in principle be tested. We present a study of photometric variability among 1,974 confirmed T Tauri members of various sub-regions of the Orion OB1 association, and with ages spanning 4-10 Myr, using optical time-series from three different surveys. For 564 of the stars (~32% of the weak-lined T Tauri stars and ~13% of the classical T Tauri stars in our sample) we detect statistically significant periodic variations which we attribute to the stellar rotation periods, making this one of the largest samples of T Tauri star rotation periods yet published. We observe a clear change in the overall rotation period distributions over the age range 4-10 Myr, with the progressively older sub-populations exhibiting systematically faster rotation. This result is consistent with angular momentum evolution model predictions of an important qualitative change in the stellar rotation periods starting at ~5 Myr, an age range for which very few observational constraints were previously available.
We present the results from our time-series imaging data taken with the 1.3m Devasthal fast optical telescope and 0.81m Tenagara telescope in $V$, $R_{c}$, $I_{c}$ bands covering an area of $sim18^prime.4times 18^prime.4$ towards the star-forming region Sh 2-190. This photometric data helped us to explore the nature of the variability of pre-main sequence (PMS) stars. We have identified 85 PMS variables, i.e., 37 Class II and 48 Class III sources. Forty-five of the PMS variables are showing periodicity in their light curves. We show that the stars with thicker discs and envelopes rotate slower and exhibit larger photometric variations compared to their disc-less counterparts. This result suggests that rotation of the PMS stars is regulated by the presence of circumstellar discs. We also found that the period of the stars show a decreasing trend with increasing mass in the range of $sim$0.5-2.5 M$_odot$. Our result indicates that most of the variability in Class II sources is ascribed to the presence of thick disc, while the presence of cool spots on the stellar surface causes the brightness variation in Class III sources. X-ray activities in the PMS stars were found to be at the saturation level reported for the main sequence (MS) stars. The younger counterparts of the PMS variables are showing less X-ray activity hinting towards a less significant role of a stellar disc in X-ray generation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا