No Arabic abstract
A simple two-band model is used to describe the magnitude and temperature dependence of the magnetic susceptibility, Hall coefficient and Seebeck data from undoped and Co doped BaFe2As2. Overlapping, rigid parabolic electron and hole bands are considered as a model of the electronic structure of the FeAs-based semimetals. The model has only three parameters: the electron and hole effective masses and the position of the valence band maximum with respect to the conduction band minimum. The model is able to reproduce in a semiquantitative fashion the magnitude and temperature dependence of many of the normal state magnetic and transport data from the FeAs-type materials, including the ubiquitous increase in the magnetic susceptibility with increasing temperature.
A simple two-band model is used to describe the magnitude and temperature dependence of the magnetic susceptibility, Hall coefficient and Seebeck data from undoped and Co doped BaFe2As2. Overlapping rigid parabolic electron and hole bands are considered as a model of the electronic structure of the FeAs-based semimetals. The model has only three parameters: the electron and hole effective masses and the position of the valence band maximum with respect to the conduction band minimum. The model is able to reproduce in a semiquantitative fashion the magnitude and temperature dependence of many of the normal state magnetic and transport data from the FeAs-type materials, including the ubiquitous increase in the magnetic susceptibility with increasing temperature.
We present a calorimetric study on single crystals of Ca(Fe1-xCox)2As2 (x = 0, 0.032, 0.051, 0.056, 0.063, and 0.146). The combined first order spin-density wave/structural transition occurs in the parent CaFe2As2 compound at 168 K and gradually shifts to lower temperature for low doping levels (x = 0.032 and x = 0.051). It is completely suppressed upon higher doping x = 0.056. Simultaneously, superconductivity appears at lower temperature with a transition temperature around Tc = 14.1 K for Ca(Fe0.937Co0.063)2As2. The phase diagram of Ca(Fe0.937Co0.063)2As2 has been derived and the upper critical field is found to be H(c) c2 = 11.5
We report the temperature dependence of the resistivity and thermoelectric power under hydrostatic pressure of the itinerant antiferromagnet BaFe2As2 and the electron-doped superconductor Ba(Fe0.9Co0.1)2As2. We observe a hole-like contribution to the thermopower below the structural-magnetic transition in the parent compound that is suppressed in magnitude and temperature with pressure. Pressure increases the contribution of electrons to transport in both the doped and undoped compound. In the 10% Co-doped sample, we used a two-band model for thermopower to estimate the carrier concentrations and determine the effect of pressure on the band structure.
The magnetic excitations in the paramagnetic-tetragonal phase of underdoped Ba(Fe0.953Co0.047)2As2, as measured by inelastic neutron scattering, can be well described by a phenomenological model with purely diffusive spin dynamics. At low energies, the spectrum around the magnetic ordering vector Q_AFM consists of a single peak with elliptical shape in momentum space. At high energies, this inelastic peak is split into two peaks across the direction perpendicular to Q_AFM. We use our fittings to argue that such a splitting is not due to incommensurability or propagating spin-wave excitations, but is rather a consequence of the anisotropies in the Landau damping and in the magnetic correlation length, both of which are allowed by the tetragonal symmetry of the system. We also measure the magnetic spectrum deep inside the magnetically-ordered phase, and find that it is remarkably similar to the spectrum of the paramagnetic phase, revealing the strongly overdamped character of the magnetic excitations.
A model based on the alternating structure of the imbedded conduction layers (the Cu-O2 planes) with the charge-transfer-insulator (CTI) layers is proposed. There are three kinds of carriers, each with a different behavior: conduction-like holes in the Cu-O2 layers and electrons and normal holes in the CTI matrix between the Cu-O2 layers. This structure explains the strong anisotropies. The relationship is obtained between the concentration nq of conduction-like holes in the Cu-O2 layers and the temperature T. The anomalous temperature behavior of the resistivity as well as the Hall constant also follows. We give the hole density in ab plane a definite physical meaning, and also define explicitly optimal doping, overdoping and underdoping. Our model gives the correct temperature dependence of the resistivity and the hole constant on optimal doping, overdoping and underdoping, and it predicts the temperature behavior of the cotangent of the Hall angle quite well. Based on this model, we can also understand that the HiTc materials become Fermi Liquids in the extremely overdoped region, and the dR/dT becomes negative below some temperature T<1.211T0 in the underdoped case. Based on this model, the thermal behaviors of the magnetic susceptibility in different doping can also be easily explained. The resistivity along c-axis is discussed.