Do you want to publish a course? Click here

The H-polynomial of a Group Embedding

160   0   0.0 ( 0 )
 Added by Lex Renner
 Publication date 2009
  fields
and research's language is English
 Authors Lex E. Renner




Ask ChatGPT about the research

The Poincare polynomial of a Weyl group calculates the Betti numbers of the projective homogeneous space $G/B$, while the $h$-vector of a simple polytope calculates the Betti numbers of the corresponding rationally smooth toric variety. There is a common generalization of these two extremes called the $H$-polynomial. It applies to projective, homogeneous spaces, toric varieties and, much more generally, to any algebraic variety $X$ where there is a connected, solvable, algebraic group acting with a finite number of orbits. We illustrate this situation by describing the $H$-polynomials of certain projective $Gtimes G$-varieties $X$, where $G$ is a semisimple group and $B$ is a Borel subgroup of $G$. This description is made possible by finding an appropriate cellular decomposition for $X$ and then describing the cells combinatorially in terms of the underlying monoid of $Btimes B$-orbits. The most familiar example here is the wonderful compactification of a semisimple group of adjoint type.



rate research

Read More

70 - Christian Urech 2018
The Cremona group is the group of birational transformations of the complex projective plane. In this paper we classify its subgroups that consist only of elliptic elements using elementary model theory. This yields in particular a description of the structure of torsion subgroups. As an appliction, we prove the Tits alternative for arbitrary subgroups of the Cremona group, generalizing a result of Cantat. We also describe solvable subgroups of the Cremona group and their derived length, refining results from Deserti.
We study the properties of the fundamental group of an affine curve over an algebraically closed field of characteristic $p$, from the point of view of embedding problems. In characteristic zero, the fundamental group is free, but in characteristic $p$ it is not even $omega$-free. In this paper we show that it is almost $omega$-free, in the sense that each finite embedding problem has a proper solution when restricted to some open subgroup. We also prove that embedding problems can always be properly solved over the given curve if suitably many additional branch points are allowed, in locations that can be specified arbitrarily; this strengthens a result of the first author.
Let G be a finite group, and $g geq 2$. We study the locus of genus g curves that admit a G-action of given type, and inclusions between such loci. We use this to study the locus of genus g curves with prescribed automorphism group G. We completely classify these loci for g=3 (including equations for the corresponding curves), and for $g leq 10$ we classify those loci corresponding to large G.
204 - Andrew Putman 2009
For $4 mid L$ and $g$ large, we calculate the integral Picard groups of the moduli spaces of curves and principally polarized abelian varieties with level $L$ structures. In particular, we determine the divisibility properties of the standard line bundles over these moduli spaces and we calculate the second integral cohomology group of the level $L$ subgroup of the mapping class group (in a previous paper, the author determined this rationally). This entails calculating the abelianization of the level $L$ subgroup of the mapping class group, generalizing previous results of Perron, Sato, and the author. Finally, along the way we calculate the first homology group of the mod $L$ symplectic group with coefficients in the adjoint representation.
Let $pi_1(C)$ be the algebraic fundamental group of a smooth connected affine curve, defined over an algebraically closed field of characteristic $p>0$ of countable cardinality. Let $N$ be a normal (resp. characteristic) subgroup of $pi_1(C)$. Under the hypothesis that the quotient $pi_1(C)/N$ admits an infinitely generated Sylow $p$-subgroup, we prove that $N$ is indeed isomorphic to a normal (resp. characteristic) subgroup of a free profinite group of countable cardinality. As a consequence, every proper open subgroup of $N$ is a free profinite group of countable cardinality.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا