Manifestation of Spin Selection Rules on the Quantum Tunneling of Magnetization in a Single Molecule Magnet


Abstract in English

We present low temperature magnetometry measurements on a new Mn3 single-molecule magnet (SMM) in which the quantum tunneling of magnetization (QTM) displays clear evidence for quantum mechanical selection rules. A QTM resonance appearing only at elevated temperatures demonstrates tunneling between excited states with spin projections differing by a multiple of three: this is dictated by the C3 symmetry of the molecule, which forbids pure tunneling from the lowest metastable state. Resonances forbidden by the molecular symmetry are explained by correctly orienting the Jahn-Teller axes of the individual manganese ions, and by including transverse dipolar fields. These factors are likely to be important for QTM in all SMMs.

Download