Do you want to publish a course? Click here

On the instability of charged wormholes supported by a ghost scalar field

156   0   0.0 ( 0 )
 Added by Olivier Sarbach
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

In previous work, we analyzed the linear and nonlinear stability of static, spherically symmetric wormhole solutions to Einsteins field equations coupled to a massless ghost scalar field. Our analysis revealed that all these solutions are unstable with respect to linear and nonlinear spherically symmetric perturbations and showed that the perturbation causes the wormholes to either decay to a Schwarzschild black hole or undergo a rapid expansion. Here, we consider charged generalization of the previous models by adding to the gravitational and ghost scalar field an electromagnetic one. We first derive the most general static, spherically symmetric wormholes in this theory and show that they give rise to a four-parameter family of solutions. This family can be naturally divided into subcritical, critical and supercritical solutions depending on the sign of the sum of the asymptotic masses. Then, we analyze the linear stability of these solutions. We prove that all subcritical and all critical solutions possess one exponentially in time growing mode. It follows that all subcritical and critical wormholes are linearly unstable. In the supercritical case we provide numerical evidence for the existence of a similar unstable mode.



rate research

Read More

We analyze the nonlinear evolution of spherically symmetric wormhole solutions coupled to a massless ghost scalar field using numerical methods. In a previous article we have shown that static wormholes with these properties are unstable with respect to linear perturbations. Here we show that depending on the initial perturbation the wormholes either expand or decay to a Schwarzschild black hole. We estimate the time scale of the expanding solutions and the ones collapsing to a black hole and show that they are consistent in the regime of small perturbations with those predicted from perturbation theory. In the collapsing case, we also present a systematic study of the final black hole horizon and discuss the possibility for a luminous signal to travel from one universe to the other and back before the black hole forms. In the expanding case, the wormholes seem to undergo an exponential expansion, at least during the run time of our simulations.
We examine the linear stability of static, spherically symmetric wormhole solutions of Einsteins field equations coupled to a massless ghost scalar field. These solutions are parametrized by the areal radius of their throat and the product of the masses at their asymptotically flat ends. We prove that all these solutions are unstable with respect to linear fluctuations and possess precisely one unstable, exponentially in time growing mode. The associated time scale is shown to be of the order of the wormhole throat divided by the speed of light. The nonlinear evolution is analyzed in a subsequent article.
227 - Ran Li , Junkun Zhao 2014
It has been shown that the mass of the scalar field in the charged stringy black hole is never able to generate a potential well outside the event horizon to trap the superradiant modes. This is to say that the charged stringy black hole is stable against the massive charged scalar perturbation. In this paper we will study the superradiant instability of the massless scalar field in the background of charged stringy black hole due to a mirror-like boundary condition. The analytical expression of the unstable superradiant modes is derived by using the asymptotic matching method. It is also pointed out that the black hole mirror system becomes extremely unstable for a large charge $q$ of scalar field and the small mirror radius $r_m$.
We explore the possibility that traversable wormholes be supported by specific equations of state responsible for the present accelerated expansion of the Universe, namely, phantom energy, the generalized Chaplygin gas, and the van der Waals quintessence equation of state.
In Phys.Rev.D89, 104053 (2014) we studied the absorption cross section of a scalar field of mass $m$ impinging on a static black hole of mass $M$ and charge $Q$. We presented numerical results using the partial-wave method, and analytical results in the high- and low-frequency limit. Our low-frequency approximation was only valid if the (dimensionless) field velocity $v$ exceeds $v_c = 2 pi M m$. In this Addendum we give the complementary result for $v lesssim v_c$, and we consider the possible physical relevance of this regime.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا