Do you want to publish a course? Click here

Computation on Spin Chains with Limited Access

65   0   0.0 ( 0 )
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We show how to implement quantum computation on a system with an intrinsic Hamiltonian by controlling a limited subset of spins. Our primary result is an efficient control sequence on a nearest-neighbor XY spin chain through control of a single site and its interaction with its neighbor. Control of an array of sites yields sufficient parallelism for the implementation of fault-tolerant circuits. The framework exposes contradictions between the control theoretic concept of controllability with the ability of a system to perform quantum computation.

rate research

Read More

57 - G. Ciaramicoli , I. Marzoli , 2007
We demonstrate that spin chains are experimentally feasible using electrons confined in micro-Penning traps, supplemented with local magnetic field gradients. The resulting Heisenberg-like system is characterized by coupling strengths showing a dipolar decay. These spin chains can be used as a channel for short distance quantum communication. Our scheme offers high accuracy in reproducing an effective spin chain with relatively large transmission rate.
We propose a scheme for the determination of the coupling parameters in a chain of interacting spins. This requires only time-resolved measurements over a single particle, simple data post-processing and no state initialization or prior knowledge of the state of the chain. The protocol fits well into the context of quantum-dynamics characterization and is efficient even when the spin-chain is affected by general dissipative and dephasing channels. We illustrate the performance of the scheme by analyzing explicit examples and discuss possible extensions.
We consider two new quantum gate mechanisms based on nuclear spins in hyperpolarized solid $^{129}Xe$ and HCl mixtures and inorganic semiconductors. We propose two schemes for implementing a controlled NOT (CNOT) gate based on nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) from hyperpolarized solid $^{129}Xe$ and HCl mixtures and optically pumped NMR in semiconductors. Such gates might be built up with particular spins addressable based on MRI techniques and optical pumping and optical detection techniques. The schemes could be useful for implementing actual quantum computers in terms of a cellular automata architecture.
We investigate the influence of noise on a graph state generation scheme which exploits a mirror inverting spin chain. Within this scheme the spin chain is used repeatedly as an entanglement bus (EB) to create multi-partite entanglement. The noise model we consider comprises of each spin of this EB being exposed to independent local noise which degrades the capabilities of the EB. Here we concentrate on quantifying its performance as a single-qubit channel and as a mediator of a two-qubit entangling gate, since these are basic operations necessary for graph state generation using the EB. In particular, for the single-qubit case we numerically calculate the average channel fidelity and whether the channel becomes entanglement breaking, i.e., expunges any entanglement the transferred qubit may have with other external qubits. We find that neither local decay nor dephasing noise cause entanglement breaking. This is in contrast to local thermal and depolarizing noise where we determine a critical length and critical noise coupling, respectively, at which entanglement breaking occurs. The critical noise coupling for local depolarizing noise is found to exhibit a power-law dependence on the chain length. For two qubits we similarly compute the average gate fidelity and whether the ability for this gate to create entanglement is maintained. The concatenation of these noisy gates for the construction of a five qubit linear cluster state and a Greenberger-Horne-Zeilinger state indicates that the level of noise that can be tolerated for graph state generation is tightly constrained.
85 - Ping Dong , Ming Yang , 2007
Universal set of quantum gates are realized from the conduction-band electron spin qubits of quantum dots embedded in a microcavity via two-channel Raman interaction. All of the gate operations are independent of the cavity mode states, emph{i.e.}, insensitive to the thermal cavity field. Individual addressing and effective switch of the cavity mediated interaction are directly possible here. Meanwhile, gate operations also can be carried out in parallel. The simple realization of needed interaction for selective qubits makes current scenario more suitable for scalable quantum computation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا