Anomalous scaling of fermions and order parameter fluctuations at quantum criticality


Abstract in English

We analyze the quantum phase transition between a semimetal and a superfluid in a model of attractively interacting fermions with a linear dispersion. The quantum critical properties of this model cannot be treated by the Hertz-Millis approach since integrating out the fermions leads to a singular Landau-Ginzburg order parameter functional. We therefore derive and solve coupled renormalization group equations for the fermionic degrees of freedom and the bosonic order parameter fluctuations. In two spatial dimensions, fermions and bosons acquire anomalous scaling dimensions at the quantum critical point, associated with non-Fermi liquid behavior and non-Gaussian order parameter fluctuations.

Download