Do you want to publish a course? Click here

Spin Gap and Resonance at the Nesting Wavevector in Superconducting FeSe0.4Te0.6

408   0   0.0 ( 0 )
 Added by Collin Broholm
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

Neutron scattering is used to probe magnetic excitations in FeSe_{0.4}Te_{0.6} (T_c=14 K). Low energy spin fluctuations are found with a characteristic wave vector $(0.5,0.5,L)$ that corresponds to Fermi surface nesting and differs from Q_m=(delta,0,0.5) for magnetic ordering in Fe_{1+y}Te. A spin resonance with hbarOmega_0=6.5 meV approx 5.3 k_BT_c and hbarGamma=1.25 meV develops in the superconducting state from a normal state continuum. We show that the resonance is consistent with a bound state associated with s+/- superconductivity and imperfect quasi-2D Fermi surface nesting.



rate research

Read More

111 - T. Baba , T. Yokoya , S. Tsuda 2008
We have performed ultrahigh-resolution angle-resolved photoemission spectroscopy to directly observe the large superconducting (SC) gap anisotropy (GA) of YNi2B2C. The result shows large SC GA with a smooth variation along an intersection of a Fermi surface (FS) around the $Gamma$-Z line and nearly isotropic SC gap values for two intersections of FSs around the X-P line but with a point-like non-zero minimum only for one sheet. The point-like SC gap minimum can be connected by the nesting vector reported from band calculations. The results show unexpectedly complicated SC GA of borocarbide superconductors.
We use neutron spectroscopy to determine the nature of the magnetic excitations in superconducting BaFe$_{1.9}$Ni$_{0.1}$As$_{2}$ ($T_{c}=20$ K). Above $T_{c}$ the excitations are gapless and centered at the commensurate antiferromagnetic wave vector of the parent compound, while the intensity exhibits a sinusoidal modulation along the c-axis. As the superconducting state is entered a spin gap gradually opens, whose magnitude tracks the $T$-dependence of the superconducting gap observed by angle resolved photoemission. Both the spin gap and magnetic resonance energies are temperature textit{and} wave vector dependent, but their ratio is the same within uncertainties. These results suggest that the spin resonance is a singlet-triplet excitation related to electron pairing and superconductivity.
We use high resolution angle resolved photoemission spectroscopy and density functional theory with experimentally obtained crystal structure parameters to study the electronic properties of CaKFe4As4. In contrast to related CaFe2As2 compounds, CaKFe4As4 has high Tc of 35K at stochiometric composition. This presents unique opportunity to study properties of high temperature superconductivity of iron arsenic superconductors in absence of doping or substitution. The Fermi surface consists of three hole pockets at $Gamma$ and two electron pockets at the $M$ point. We find that the values of the superconducting gap are nearly isotropic, but significantly different for each of the FS sheets. Most importantly we find that the overall momentum dependence of the gap magnitudes plotted across the entire Brillouin zone displays a strong deviation from the simple cos(kx)cos(ky) functional form of the gap function, proposed in the scenario of the Cooper-pairing driven by a short range antiferromagnetic exchange interaction. Instead, the maximum value of the gap is observed for FS sheets that are closest to the ideal nesting condition in contrast to the previous observations in some other ferropnictides. These results provide strong support for the multiband character of superconductivity in CaKFe4As4, in which Cooper pairing forms on the electron and the hole bands interacting via dominant interband repulsive interaction, enhanced by FS nesting}.
Spin/magnetisation relaxation and coherence times, respectively T_1 and T_2, initially defined in the context of nuclear magnetic resonance (NMR), are general concepts applicable to a wide range of systems, including quantum bits [1-4]. At first glance, these ideas might seem to be irrelevant to conventional Bardeen-Cooper-Schrieffer (BCS) superconductors, as the BCS superconducting ground state is a condensate of Cooper pairs of electrons with opposite spins (in a singlet state) [5]. It has recently been demonstrated, however, that a non-equilibrium magnetisation can appear in the quasiparticle (i.e. excitation) population of a conventional superconductor, with relaxation times on the order of several nanoseconds [6-10]. This raises the question of the spin coherence time of quasiparticles in superconductors and whether this can be measured through resonance experiments analogous to NMR and electron spin resonance (ESR). We have performed such measurements in aluminium and find a quasiparticle spin coherence time of 95+/-20ps.
72 - M.M. Korshunov 2018
Spin resonance in the superconducting state of Fe-based materials within the multiorbital model with unequal anisotropic gaps on different Fermi surface sheets is studied. On the basis of the model gap function and the one calculated within the spin fluctuation theory of pairing, I show that the resonance peak shifts to higher frequencies with increasing the zero-amplitude gap magnitude. On the contrary, with increasing the gap anisotropy, it shifts to lower frequencies and lose some intensity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا