No Arabic abstract
Mutual event observations between the two components of 90 Antiope were carried out in 2007-2008. The pole position was refined to lambda0 = 199.5+/-0.5 eg and beta0 = 39.8+/-5 deg in J2000 ecliptic coordinates, leaving intact the physical solution for the components, assimilated to two perfect Roche ellipsoids, and derived after the 2005 mutual event season (Descamps et al., 2007). Furthermore, a large-scale geological depression, located on one of the components, was introduced to better match the observed lightcurves. This vast geological feature of about 68 km in diameter, which could be postulated as a bowl-shaped impact crater, is indeed responsible of the photometric asymmetries seen on the shoulders of the lightcurves. The bulk density was then recomputed to 1.28+/-0.04 gcm-3 to take into account this large-scale non-convexity. This giant crater could be the aftermath of a tremendous collision of a 100-km sized proto-Antiope with another Themis family member. This statement is supported by the fact that Antiope is sufficiently porous (~50%) to survive such an impact without being wholly destroyed. This violent shock would have then imparted enough angular momentum for fissioning of proto-Antiope into two equisized bodies. We calculated that the impactor must have a diameter greater than ~17 km, for an impact velocity ranging between 1 and 4 km/s. With such a projectile, this event has a substantial 50% probability to have occurred over the age of the Themis family.
The NASA Dawn mission has extensively examined the surface of asteroid Vesta, the second most massive body in the main belt. The high quality of the gathered data provides us with an unique opportunity to determine the surface and internal properties of one of the most important and intriguing main belt asteroids (MBAs). In this paper, we focus on the size frequency distributions (SFDs) of sub-kilometer impact craters observed at high spatial resolution on several selected young terrains on Vesta. These small crater populations offer an excellent opportunity to determine the nature of their asteroidal precursors (namely MBAs) at sizes that are not directly observable from ground-based telescopes (i.e., below ~100 m diameter). Moreover, unlike many other MBA surfaces observed by spacecraft thus far, the young terrains examined had crater spatial densities that were far from empirical saturation. Overall, we find that the cumulative power-law index (slope) of small crater SFDs on Vesta is fairly consistent with predictions derived from current collisional and dynamical models down to a projectile size of ~10 m diameter (Bottke et al., 2005a,b). The shape of the impactor SFD for small projectile sizes does not appear to have changed over the last several billions of years, and an argument can be made that the absolute number of small MBAs has remained roughly constant (within a factor of 2) over the same time period. The apparent steady state nature of the main belt population potentially provides us with a set of intriguing constraints that can be used to glean insights into the physical evolution of individual MBAs as well as the main belt as an ensemble.
A diurnal varying haze layer at the bright spots of Occator on dwarf planet Ceres has been reported from images of the Dawn Framing Camera. This finding is supported by ground-based observations revealing diurnal albedo changes at Occators longitude. In the present work, we further investigate the previously reported haze phenomenon in more detail using additional Framing Camera images. We demonstrate that the light scattering behavior at the central floor of Occator is different compared to a typical cerean surface and is likely inconsistent with a pure solid surface scatterer. The identified deviation is best explained by an additional component to the scattered light of the surface, i.e., a haze layer. Our results support the water vapor detection by Herschel observations though the existence of a tenuous cerean exosphere is not yet confirmed.
The identification of impact craters on planetary surfaces provides important information about their geological history. Most studies have relied on individual analysts who map and identify craters and interpret crater statistics. However, little work has been done to determine how the counts vary as a function of technique, terrain, or between researchers. Furthermore, several novel internet-based projects ask volunteers with little to no training to identify craters, and it was unclear how their results compare against the typical professional researcher. To better understand the variation among experts and to compare with volunteers, eight professional researchers have identified impact features in two separate regions of the moon. Small craters (diameters ranging from 10 m to 500 m) were measured on a lunar mare region and larger craters (100s m to a few km in diameter) were measured on both lunar highlands and maria. Volunteer data were collected for the small craters on the mare. Our comparison shows that the level of agreement among experts depends on crater diameter, number of craters per diameter bin, and terrain type, with differences of up to $simpm45%$. We also found artifacts near the minimum crater diameter that was studied. These results indicate that caution must be used in most cases when interpreting small variations in crater size-frequency distributions and for craters $le10$ pixels across. Because of the natural variability found, projects that emphasize many people identifying craters on the same area and using a consensus result are likely to yield the most consistent and robust information.
Crater counting on the Moon and other bodies is crucial to constrain the dynamical history of the Solar System. This has traditionally been done by visual inspection of images, thus limiting the scope, efficiency, and/or accuracy of retrieval. In this paper we demonstrate the viability of using convolutional neural networks (CNNs) to determine the positions and sizes of craters from Lunar digital elevation maps (DEMs). We recover 92% of craters from the human-generated test set and almost double the total number of crater detections. Of these new craters, 15% are smaller in diameter than the minimum crater size in the ground-truth dataset. Our median fractional longitude, latitude and radius errors are 11% or less, representing good agreement with the human-generated datasets. From a manual inspection of 361 new craters we estimate the false positive rate of new craters to be 11%. Moreover, our Moon-trained CNN performs well when tested on DEM images of Mercury, detecting a large fraction of craters in each map. Our results suggest that deep learning will be a useful tool for rapidly and automatically extracting craters on various Solar System bodies. We make our code and data publicly available at https://github.com/silburt/DeepMoon.git and https://doi.org/10.5281/zenodo.1133969 .
We obtained spectra for two giants of Crater (Crater J113613-105227 and Crater J113615-105244) using X-Shooter at the VLT. The spectra have been analysed with the MyGIsFoS code using a grid of synthetic spectra computed from one dimensional, Local Thermodynamic Equilibrium (LTE) model atmospheres. Effective temperature and surface gravity have been derived from photometry measured from images obtained by the Dark Energy Survey. The radial velocities are 144.3+-4.0 km/s for Crater J113613-105227 and and 134.1+-4.0 km/s for Crater J113615-105244. The metallicities are [Fe/H]=-1.73 and [Fe/H]=-1.67, respectively. Beside the iron abundance we could determine abundances for nine elements: Na, Mg, Ca, Ti, V, Cr, Mn, Ni and Ba. For Na and Ba we took into account deviations from LTE, since the corrections are significant. The abundance ratios are similar in the two stars and resemble those of Galactic stars of the same metallicity. On the deep photometric images we could detect several stars that lie to the blue of the turn-off. conclusions heading (optional), leave it empty if necessary The radial velocities imply that both stars are members of the Crater stellar system. The difference in velocity between the two taken at face value, implies a velocity dispersion > 3.7 km/s at 95% confidence level. Our spectroscopic metallicities are in excellent agreement with that determined by previous investigations using photometry. Our deep photometry and the spectroscopic metallicity imply an age of 7 Gyr for the main population of the system. The stars to the blue of the turn-off can be interpreted as a younger population, of the same metallicity and an age of 2.2 Gyr. Finally, spatial and kinematical parameters support the idea that this system is associated to the galaxies Leo~IV and Leo~V. All the observations favour the interpretation of Crater as a dwarf galaxy. (Abridged).