Based on the geometry of entangled three and two qubit states, we present the connection between the entanglement measure of the three-qubit state defined using the last Hopf fibration and the entanglement measures known as two- and three-tangle. Moreover, the generalization of the geometric representation of four qubit state and a potential entanglement measure is studied using sedenions for the simplification of the Hilbert space S^31 of the four qubit system. An entanglement measure is proposed and the degree of entanglement is calculated for specific states. The difficulties of a possible generalization are discussed.