Do you want to publish a course? Click here

GW correlation effects on plutonium quasiparticle energies: changes in crystal-field splitting

100   0   0.0 ( 0 )
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present results for the electronic structure of plutonium by using a recently developed quasiparticle self-consistent $GW$ method (qsgw). We consider a paramagnetic solution without spin-orbit interaction as a function of volume for the face-centered cubic (fcc) unit cell. We span unit-cell volumes ranging from 10% greater than the equilibrium volume of the $delta$ phase to 90 % of the equivalent for the $alpha$ phase of Pu. The self-consistent $GW$ quasiparticle energies are compared to those obtained within the Local Density Approximation (LDA). The goal of the calculations is to understand systematic trends in the effects of electronic correlations on the quasiparticle energy bands of Pu as a function of the localization of the $f$ orbitals. We show that correlation effects narrow the $f$ bands in two significantly different ways. Besides the expected narrowing of individual $f$ bands (flatter dispersion), we find that an even more significant effect on the $f$ bands is a decrease in the crystal-field splitting of the different bands.



rate research

Read More

The electronic structure of the honeycomb lattice iridates Na2IrO3 and Li2IrO3 has been investigated using resonant inelastic x-ray scattering (RIXS). Crystal-field split d-d excitations are resolved in the high-resolution RIXS spectra. In particular, the splitting due to non-cubic crystal fields, derived from the splitting of j_eff=3/2 states, is much smaller than the typical spin-orbit energy scale in iridates, validating the applicability of j_eff physics in A2IrO3. We also find excitonic enhancement of the particle-hole excitation gap around 0.4 eV, indicating that the nearest-neighbor Coulomb interaction could be large. These findings suggest that both Na2IrO3 and Li2IrO3 can be described as spin-orbit Mott insulators, similar to the square lattice iridate Sr2IrO4.
In this work, we study crystalline electric field effects in the heavy fermion superconductor CeIrIn5. We observe two regions of broad magnetic response in the inelastic neutron scattering spectra at 10 K. The first corresponds to the transition between the gamma7 groundstate doublet and the first excited state doublet at 4 meV interwoven with a broad quasielastic contribution. The second region corresponds to the transition between the ground state and the second excited state doublet at 28 meV. The large Lorentzian half-widths of the peaks (~10 meV) calls into question calculations for the specific heat and magnetic susceptibility that assume sharp crystal field levels. Consequently, we have calculated the inelastic neutron scattering spectra and magnetic susceptibility using the Anderson impurity model within the non-crossing approximation (NCA) including the effects of crystal field level splitting.
An understanding of the phase diagram of elemental plutonium (Pu) must include both the effects of the strong directional bonding and the high density of states of the Pu 5f electrons, as well as how that bonding weakens under the influence of strong electronic correlations. We present for the first time electronic-structure calculations of the full 16-atom per unit cell alpha-phase structure within the framework of density functional theory (DFT) together with dynamical mean-field theory (DMFT). Our calculations demonstrate that Pu atoms sitting on different sites within the alpha-Pu crystal structure have a strongly varying site dependence of the localization-delocalization correlation effects of their 5f electrons and a corresponding effect on the bonding and electronic properties of this complicated metal. In short, alpha-Pu has the capacity to simultaneously have multiple degrees of electron localization/delocalization of Pu 5f electrons within a pure single-element material.
Understanding the crystal field splitting and orbital polarization in non-centrosymmetric systems such as ferroelectric materials is fundamentally important. In this study, taking BaTiO$_3$ (BTO) as a representative material we investigate titanium crystal field splitting and orbital polarization in non-centrosymmetric TiO$_6$ octahedra with resonant X-ray linear dichroism at Ti $L_{2,3}$-edge. The high-quality BaTiO$_3$ thin films were deposited on DyScO$_3$ (110) single crystal substrates in a layer-by-layer way by pulsed laser deposition. The reflection high-energy electron diffraction (RHEED) and element specific X-ray absorption spectroscopy (XAS) were performed to characterize the structural and electronic properties of the films. In sharp contrast to conventional crystal field splitting and orbital configuration ($d_{xz}$/$d_{yz}$ $<$ $d_{xy}$ $<$ $d_{3z^2-r^2}$ $<$ $d_{x^2-y^2}$ or $d_{xy}$ $<$ $d_{xz}$/$d_{yz}$ $<$ $d_{x^2-y^2}$ $<$ $d_{3z^2-r^2}$) according to Jahn-Teller effect, it is revealed that $d_{xz}$, $d_{yz}$, and $d_{xy}$ orbitals are nearly degenerate, whereas $d_{3z^2-r^2}$ and $d_{x^2-y^2}$ orbitals are split with an energy gap $sim$ 100 meV in the epitaxial BTO films. The unexpected degenerate states $d_{xz}$/$d_{yz}$/$d_{xy}$ are coupled to Ti-O displacements resulting from competition between polar and Jahn-Teller distortions in non-centrosymmetric TiO$_6$ octhedra of BTO films. Our results provide a route to manipulate orbital degree of freedom by switching electric polarization in ferroelectric materials.
We present a tight-binding based GW approach for the calculation of quasiparticle energy levels in confined systems such as molecules. Key quantities in the GW formalism like the microscopic dielectric function or the screened Coulomb interaction are expressed in a minimal basis of spherically averaged atomic orbitals. All necessary integrals are either precalculated or approximated without resorting to empirical data. The method is validated against first principles results for benzene and anthracene, where good agreement is found for levels close to the frontier orbitals. Further, the size dependence of the quasiparticle gap is studied for conformers of the polyacenes ($C_{4n+2}H_{2n+4}$) up to n = 30.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا