No Arabic abstract
We discuss how the different estimates of elliptic flow are influenced by flow fluctuations and nonflow effects. It is explained why the event-plane method yields estimates between the two-particle correlation methods and the multiparticle correlation methods. It is argued that nonflow effects and fluctuations cannot be disentangled without other assumptions. However, we provide equations where, with reasonable assumptions about fluctuations and nonflow, all measured values of elliptic flow converge to a unique mean v_{2,PP} elliptic flow in the participant plane and, with a Gaussian assumption on eccentricity fluctuations, can be converted to the mean v_{2,RP} in the reaction plane. Thus, the 20% spread in observed elliptic flow measurements from different analysis methods is no longer mysterious.
We discuss how the different estimates of elliptic flow are influenced by flow fluctuations and nonflow effects. It is explained why the event-plane method yields estimates between the two-particle correlation methods and the multiparticle correlation methods. It is argued that nonflow effects and fluctuations cannot be disentangled without other assumptions. However, we provide equations where, with reasonable assumptions about fluctuations and nonflow, all measured values of elliptic flow converge to a unique mean elliptic flow in the participant plane. Thus, the 20% spread in observed elliptic flow measurements from different analysis methods is no longer mysterious.
The effect of hadronic rescattering on the elliptic flow has been investigated by the Cooper-Frye hadronization model from hydrodynamic evolution following by the afterburner hadronic rescattering model for 200 GeV/c Au + Au at 20-40% centrality. It is found that the hadronic rescattering can suppress elliptic flow $v_2$ in momentum space especially in lower transverse momentum region. In addition, the hadronic rescattering effects on transverse momentum spectra and anisotropy coordinate space of hadrons are studied.
We present first results on event-by-event elliptic flow fluctuations in nucleus-nucleus collisions corrected for effects of non-flow correlations where the magnitude of non-flow correlations has been independently measured in data. Over the measured range in centrality, we see large relative fluctuations of 25-50%. The results are consistent with predictions from both color glass condensate and Glauber type initial condition calculations of the event-by-event participant eccentricity fluctuations.
The directed flow of particles produced in ultrarelativistic heavy ion collisions at SPS and RHIC is so small that currently available methods of analysis are at the border of applicability. Standard two-particle and flow-vector methods are biased by large nonflow correlations. On the other hand, cumulants of four-particle correlations, which are free from this bias, are plagued by large statistical errors. Here, we present a new method based on three-particle correlations, which uses the property that elliptic flow is large at these energies. This method may also be useful at intermediate energies, near the balance energy where directed flow vanishes.
We introduce an analysis method to measure elliptic flow (v_2) fluctuations using the PHOBOS detector for Au+Au collisions at sqrt(s) = 200 GeV. In this method, v_2 is determined event-by-event by a maximum likelihood fit. The non-statistical fluctuations are determined by unfolding the contribution of statistical fluctuations and detector effects using Monte Carlo simulations(MC). Application of this method to measure dynamical fluctuations embedded in special MC are presented. It is shown that the input fluctuations are reconstructed successfully for <v_2> >= 0.03.