Both amorphous and crystalline materials frequently exhibit low temperature specific heats in excess of what is predicted using the Debye model. The signature of this excess specific heat is a peak observed in $C/T^3$ textit{versus} $T$. To understand the curious absence of long-range ordering of local distortions in the crystal structure of pyrochlore Bi$_2$Ti$_2$O$_7$, we have measured the specific heat of crystalline Bi$_2$Ti$_2$O$_7$ and related compounds. We find that the peak in $C/T^3$ versus $T$ in Bi$_2$Ti$_2$O$_7$ falls at a substantially lower temperature than other similar compounds, consistent with the presence of disorder. This thermodynamic evidence for disorder in crystalline Bi$_2$Ti$_2$O$_7$ is consistent with quenched configurational disorder among Bi lone pairs produced by geometrical frustration, which could represent a possible realization of charge ice.