Do you want to publish a course? Click here

Theory of Carry Value Transformation (CVT) and its Application in Fractal formation

359   0   0.0 ( 0 )
 Added by Sk Sarif Hassan s
 Publication date 2009
and research's language is English




Ask ChatGPT about the research

In this paper the theory of Carry Value Transformation (CVT) is designed and developed on a pair of n-bit strings and is used to produce many interesting patterns. One of them is found to be a self-similar fractal whose dimension is same as the dimension of the Sierpinski triangle. Different construction procedures like L-system, Cellular Automata rule, Tilling for this fractal are obtained which signifies that like other tools CVT can also be used for the formation of self-similar fractals. It is shown that CVT can be used for the production of periodic as well as chaotic patterns. Also, the analytical and algebraic properties of CVT are discussed. The definition of CVT in two-dimension is slightly modified and its mathematical properties are highlighted. Finally, the extension of CVT and modified CVT (MCVT) are done in higher dimensions.



rate research

Read More

CVT and XOR are two binary operations together used to calculate the sum of two non-negative integers on using a recursive mechanism. In this present study the convergence behaviors of this recursive mechanism has been captured through a tree like structure named as CVT-XOR Tree. We have analyzed how to identify the parent nodes, leaf nodes and internal nodes in the CVT-XOR Tree. We also provide the parent information, depth information and the number of children of a node in different CVT-XOR Trees on defining three different matrices. Lastly, one observation is made towards very old Mathematical problem of Goldbach Conjecture.
The notion of Carry Value Transformation (CVT) is a model of Discrete Deterministic Dynamical System. In this paper, we have studied some interesting properties of CVT and proved that (1) the addition of any two non-negative integers is same as the sum of their CVT and XOR values. (2) While performing the repeated addition of CVT and XOR of two non-negative integers a and b (where a >= b), the number of iterations required to get either CVT=0 or XOR=0 is at most the length of a when both are expressed as binary strings. A similar process of addition of Modified Carry Value Transformation (MCVT) and XOR requires a maximum of two iterations for MCVT to be zero. (3) An equivalence relation is defined in the set (Z x Z) which divides the CV table into disjoint equivalence classes.
In this paper we have used one 2 variable Boolean function called Rule 6 to define another beautiful transformation named as Extended Rule-6. Using this function we have explored the algebraic beauties and its application to an efficient Round Robin Tournament (RRT) routine for 2k (k is any natural number) number of teams. At the end, we have thrown some light towards any number of teams of the form nk where n, k are natural numbers.
In this paper, the notion of Integral Value Transformations (IVTs), a class of Discrete Dynamical Maps has been introduced. Then notion of Affine Discrete Dynamical System (ADDS) in the light of IVTs is defined and some rudimentary mathematical properties of the system are depicted. Collatz Conjecture is one of the most enigmatic problems in 20th Century. The Conjecture was posed by German Mathematician L. Collatz in 1937. There are much advancement in generalizing and defining analogous conjectures, but even to the date, there is no fruitful result for the advancement for the settlement of the conjecture. We have made an effort to make a Collatz type problem in the domain of IVTs and we have been able to solve the problem in 2011 [1]. Here mainly, we have focused and inquired on Collatz-like ADDS. Finally, we have designed the Optimal Distributed and Parallel Environment (ODPE) in the light of ADDS.
A circle graph is a graph in which the adjacency of vertices can be represented as the intersection of chords of a circle. The problem of calculating the chromatic number is known to be NP-complete, even on circle graphs. In this paper, we propose a new integer linear programming formulation for a coloring problem on circle graphs. We also show that the linear relaxation problem of our formulation finds the fractional chromatic number of a given circle graph. As a byproduct, our formulation gives a polynomial-sized linear programming formulation for calculating the fractional chromatic number of a circle graph. We also extend our result to a formulation for a capacitated stowage stack minimization problem.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا