Do you want to publish a course? Click here

The low level of debris disk activity at the time of the Late Heavy Bombardment: a Spitzer study of Praesepe

104   0   0.0 ( 0 )
 Added by Andras Gaspar
 Publication date 2009
  fields Physics
and research's language is English
 Authors A. Gaspar




Ask ChatGPT about the research

We present 24 micron photometry of the intermediate-age open cluster Praesepe. We assemble a catalog of 193 probable cluster members that are detected in optical databases, the Two Micron All Sky Survey (2MASS), and at 24 micron, within an area of ~ 2.47 square degrees. Mid-IR excesses indicating debris disks are found for one early-type and for three solar-type stars. Corrections for sampling statistics yield a 24 micron excess fraction (debris disk fraction) of 6.5 +- 4.1% for luminous and 1.9 +- 1.2% for solar-type stars. The incidence of excesses is in agreement with the decay trend of debris disks as a function of age observed for other cluster and field stars. The values also agree with those for older stars, indicating that debris generation in the zones that emit at 24 micron falls to the older 1-10 Gyr field star sample value by roughly 750 Myr. We discuss our results in the context of previous observations of excess fractions for early- and solar-type stars. We show that solar-type stars lose their debris disk 24 micron excesses on a shorter timescale than early-type stars. Simplistic Monte Carlo models suggest that, during the first Gyr of their evolution, up to 15-30% of solar-type stars might undergo an orbital realignment of giant planets such as the one thought to have led to the Late Heavy Bombardment, if the length of the bombardment episode is similar to the one thought to have happened in our Solar System. In the Appendix, we determine the clusters parameters via boostrap Monte Carlo isochrone fitting, yielding an age of 757 Myr (+- 36 Myr at 1 sigma confidence) and a distance of 179 pc (+- 2 pc at 1 sigma confidence), not allowing for systematic errors.



rate research

Read More

We have analyzed Spitzer and NASA/IRTF 2 - 35 mum spectra of the warm, ~350 K circumstellar dust around the nearby MS star {eta} Corvi (F2V, 1.4 pm 0.3 Gyr). The spectra show clear evidence for warm, water- and carbon-rich dust at ~3 AU from the central star, in the systems Terrestrial Habitability Zone. Spectral features due to ultra-primitive cometary material were found, in addition to features due to impact produced silica and high temperature carbonaceous phases. At least 9 x 10^18 kg of 0.1 - 100 mum warm dust is present in a collisional equilibrium distribution with dn/da ~ a^-3.5, the equivalent of a 130 km radius KBO of 1.0 g/cm^3 density and similar to recent estimates of the mass delivered to the Earth at 0.6 - 0.8 Gyr during the Late Heavy Bombardment. We conclude that the parent body was a Kuiper-Belt body or bodies which captured a large amount of early primitive material in the first Myrs of the systems lifetime and preserved it in deep freeze at ~150 AU. At ~1.4 Gyr they were prompted by dynamical stirring of their parent Kuiper Belt into spiraling into the inner system, eventually colliding at 5-10 km/sec with a rocky planetary body of mass leq MEarth at ~3 AU, delivering large amounts of water (>0.1% of MEarths Oceans) and carbon-rich material. The Spitzer spectrum also closely matches spectra reported for the Ureilite meteorites of the Sudan Almahata Sitta fall in 2008, suggesting that one of the Ureilite parent bodies was a KBO.
Since giant planets scatter planetesimals within a few tidal radii of their orbits, the locations of existing planetesimal belts indicate regions where giant planet formation failed in bygone protostellar disks. Infrared observations of circumstellar dust produced by colliding planetesimals are therefore powerful probes of the formation histories of known planets. Here we present new Spitzer IRS spectrophotometry of 111 Solar-type stars, including 105 planet hosts. Our observations reveal 11 debris disks, including two previously undetected debris disks orbiting HD 108874 and HD 130322. Combining our 32 micron spectrophotometry with previously published MIPS photometry, we find that the majority of debris disks around planet hosts have temperatures in the range 60 < T < 100 K. Assuming a dust temperature T = 70 K, which is representative of the nine debris disks detected by both IRS and MIPS, we find that debris rings surrounding Sunlike stars orbit between 15 and 240 AU, depending on the mean particle size. Our observations imply that the planets detected by radial-velocity searches formed within 240 AU of their parent stars. If any of the debris disks studied here have mostly large, blackbody emitting grains, their companion giant planets must have formed in a narrow region between the ice line and 15 AU.
Context. Debris disks have commonly been studied around intermediate-mass stars. Their intense radiation fields are believed to efficiently remove the small dust grains that are constantly replenished by collisions. For lower-mass stars, in particular M-stars, the dust removal mechanism needs to be further investigated given the much weaker radiation field produced by these objects. Aims. We present new polarimetric observations of the nearly edge-on disk around the pre-main sequence M-type star GSC 07396-00759, taken with VLT/SPHERE IRDIS, with the aim to better understand the morphology of the disk, its dust properties, and the star-disk interaction via the stellar mass-loss rate. Methods. We model our observations to characterize the location and properties of the dust grains using the Henyey-Greenstein approximation of the polarized phase function and evaluate the strength of the stellar winds. Results. We find that the observations are best described by an extended and highly inclined disk ($iapprox 84.3,^{circ}pm0.3$) with a dust distribution centered at a radius $r_{0}approx107pm2$ au. The polarized phase function $S_{12}$ is best reproduced by an anisotropic scattering factor $gapprox0.6$ and small micron-sized dust grains with sizes $s>0.3,mathrm{mu}$m. We furthermore discuss some of the caveats of the approach and a degeneracy between the grain size and the porosity. Conclusions. Even though the radius of the disk may be over-estimated, our results suggest that using a given scattering theory might not be sufficient to fully explain key aspects such as the shape of the phase function, or the dust grain size. With the caveats in mind, we find that the average mass-loss rate of GSC 07396-00759 can be up to 500 times stronger than that of the Sun, supporting the idea that stellar winds from low-mass stars can evacuate small dust grains from the disk.
115 - A. M. Hughes 2012
Clumpy structure in the debris disk around Vega has been previously reported at millimeter wavelengths and attributed to concentrations of dust grains trapped in resonances with an unseen planet. However, recent imaging at similar wavelengths with higher sensitivity has disputed the observed structure. We present three new millimeter-wavelength observations that help to resolve the puzzling and contradictory observations. We have observed the Vega system with the Submillimeter Array (SMA) at a wavelength of 880 um and angular resolution of 5; with the Combined Array for Research in Millimeter-wave Astronomy (CARMA) at a wavelength of 1.3 mm and angular resolution of 5; and with the Green Bank Telescope (GBT) at a wavelength of 3.3 mm and angular resolution of 10. Despite high sensitivity and short baselines, we do not detect the Vega debris disk in either of the interferometric data sets (SMA and CARMA), which should be sensitive at high significance to clumpy structure based on previously reported observations. We obtain a marginal (3-sigma) detection of disk emission in the GBT data; the spatial distribution of the emission is not well constrained. We analyze the observations in the context of several different models, demonstrating that the observations are consistent with a smooth, broad, axisymmetric disk with inner radius 20-100 AU and width >50 AU. The interferometric data require that at least half of the 860 um emission detected by previous single-dish observations with the James Clerk Maxwell Telescope be distributed axisymmetrically, ruling out strong contributions from flux concentrations on spatial scales of <100 AU. These observations support recent results from the Plateau de Bure Interferometer indicating that previous detections of clumpy structure in the Vega debris disk were spurious.
159 - C. Thalmann 2013
We present Subaru/HiCIAO H-band high-contrast images of the debris disk around HIP 79977, whose pres- ence was recently inferred from an infrared excess. Our images resolve the disk for the first time, allowing characterization of its shape, size, and dust grain properties. We use angular differential imaging (ADI) to reveal the disk geometry in unpolarized light out to a radius of ~2, as well as polarized differential imaging (PDI) to measure the degree of scattering polarization out to ~1.5. In order to strike a favorable balance between suppression of the stellar halo and conservation of disk flux, we explore the application of principal component analysis (PCA) to both ADI and reference star subtraction. This allows accurate forward modeling of the effects of data reduction on simulated disk images, and thus direct comparison with the imaged disk. The resulting best-fit values and well-fitting intervals for the model parameters are a surface brightness power-law slope of S_out = -3.2 [-3.6,-2.9], an inclination of i = 84{deg} [81{deg},86{deg}], a high Henyey-Greenstein forward-scattering parameter of g = 0.45 [0.35, 0.60], and a non-significant disk-star offset of u = 3.0 [-1.5, 7.5] AU = 24 [-13, 61] mas along the line of nodes. Furthermore, the tangential linear polarization along the disk rises from ~10% at 0.5 to ~45% at 1.5. These measurements paint a consistent picture of a disk of dust grains produced by collisional cascades and blown out to larger radii by stellar radiation pressure.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا