Do you want to publish a course? Click here

Astrometry - Challenging our Understanding of Stellar Structure and Evolution

135   0   0.0 ( 0 )
 Added by G. Fritz Benedict
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

Stellar mass plays a central role in our understanding of star formation and aging. Stellar astronomy is largely based on two maps, both dependent on mass, either indirectly or directly: the Hertzprung-Russell Diagram (HRD) and the Mass-Luminosity Relation (MLR). The extremes of both maps, while not terra incognita, are characterized by large uncertainties. A precise HRD requires precise distance obtained by direct measurement of parallax. A precise MLR requires precise measurement of binary orbital parameters, with the ultimate goal the critical test of theoretical stellar models. Such tests require mass accuracies of ~1%. Substantial improvement in both maps requires astrometry with microsecond of arc measurement precision. Why? First, the tops of both stellar maps contain relatively rare objects, for which large populations are not found until the observing horizon reaches hundreds or thousands of parsecs. Second, the bottoms and sides of both maps contain stars, either intrinsically faint, or whose rarity guarantees great distance, hence apparent faintness. With an extensive collection of high accuracy masses that can only be provided by astrometry with microsecond of arc measurement precision, astronomers will be able to stress test theoretical models of stars at any mass and at every stage in their aging processes.

rate research

Read More

284 - B. Zeng , Q. R. Zhang , D. Rhodes 2014
Here, we unveil evidence for a quantum phase-transition in CeCu_2Ge_2 which displays both an incommensurate spin-density wave (SDW) ground-state, and a strong renormalization of the quasiparticle effective masses (mu) due to the Kondo-effect. For all angles theta between an external magnetic field (H) and the crystallographic c-axis, the application of H leads to the suppression of the SDW-state through a 2^nd-order phase-transition at a theta-dependent critical-field H_p(theta) leading to the observation of small Fermi surfaces (FSs) in the paramagnetic (PM) state. For H || c-axis, these FSs are characterized by light mus pointing also to the suppression of the Kondo-effect at H_p with surprisingly, no experimental evidence for quantum-criticality (QC). But as $H$ is rotated towards the a-axis, these mus increase considerably becoming undetectable for theta > 56^0 between H and the c-axis. Around H_p^a~ 30 T the resistivity becomes proportional T which, coupled to the divergence of mu, indicates the existence of a field-induced QC-point at H_p^a(T=0 K). This observation, suggesting FS hot-spots associated with the SDW nesting-vector, is at odds with current QC scenarios for which the continuous suppression of all relevant energy scales at H_p(theta,T) should lead to a line of quantum-critical points in the H-theta plane. Finally, we show that the complexity of its magnetic phase-diagram(s) makes CeCu_2Ge_2 an ideal system to explore field-induced quantum tricritical and QC end-points.
215 - G. Chabrier 2010
In this short review, we summarize our present understanding (and non-understanding) of exoplanet formation, structure and evolution, in the light of the most recent discoveries. Recent observations of transiting massive brown dwarfs seem to remarkably confirm the predicted theoretical mass-radius relationship in this domain. This mass-radius relationship provides, in some cases, a powerful diagnostic to distinguish planets from brown dwarfs of same mass, as for instance for Hat-P-20b. If confirmed, this latter observation shows that planet formation takes place up to at least 8 Jupiter masses. Conversely, observations of brown dwarfs down to a few Jupiter masses in young, low-extinction clusters strongly suggest an overlapping mass domain between (massive) planets and (low-mass) brown dwarfs, i.e. no mass edge between these two distinct (in terms of formation mechanism) populations. At last, the large fraction of heavy material inferred for many of the transiting planets confirms the core-accretion scenario as been the dominant one for planet formation.
When searching for exoplanets and ultimately considering their habitability, it is necessary to consider the planets composition, geophysical processes, and geochemical cycles in order to constrain the bioessential elements available to life. Determining the elemental ratios for exoplanetary ecosystems is not yet possible, but we generally assume that planets have compositions similar to those of their host stars. Therefore, using the Hypatia Catalog of high-resolution stellar abundances for nearby stars, we compare the C, N, Si, and P abundance ratios of main sequence stars with those in average marine plankton, Earths crust, as well as bulk silicate Earth and Mars. We find that, in general, plankton, Earth, and Mars are N-poor and P-rich compared with nearby stars. However, the dearth of P abundance data, which exists for only ~1% of all stars and 1% of exoplanet hosts, makes it difficult to deduce clear trends in the stellar data, let alone the role of P in the evolution of an exoplanet. Our Sun has relatively high P and Earth biology requires a small, but finite, amount of P. On rocky planets that form around host stars with substantially less P, the strong partitioning of P into the core could rule out the potential for surface P and, consequently, for life on that planets surface. Therefore, we urge the stellar abundance community to make P observations a priority in future studies and telescope designs.
Aims:We take advantage of the second data release of the Gaia space mission and the state-of-the-art astrometry delivered from very long baseline interferometry observations to revisit the structure and kinematics of the nearby Taurus star-forming region. Methods: We apply a hierarchical clustering algorithm for partitioning the stars in our sample into groups (i.e., clusters) that are associated with the various molecular clouds of the complex, and derive the distance and spatial velocity of individual stars and their corresponding molecular clouds. Results: We show that the molecular clouds are located at different distances and confirm the existence of important depth effects in this region reported in previous studies. For example, we find that the L 1495 molecular cloud is located at $d=129.9^{+0.4}_{-0.3}$ pc, while the filamentary structure connected to it (in the plane of the sky) is at $d=160.0^{+1.2}_{-1.2}$ pc. We report B 215 and L 1558 as the closest ($d=128.5^{+1.6}_{-1.6}$ pc) and most remote ($d=198.1^{+2.5}_{-2.5}$ pc) substructures of the complex, respectively. The median inter-cloud distance is 25 pc and the relative motion of the subgroups is on the order of a few km/s. We find no clear evidence for expansion (or contraction) of the Taurus complex, but signs of the potential effects of a global rotation. Finally, we compare the radial velocity of the stars with the velocity of the underlying $^{13}$CO molecular gas and report a mean difference of $0.04pm0.12$ km/s (with r.m.s. of 0.63 km/s) confirming that the stars and the gas are tightly coupled.
In young dense clusters repeated collisions between massive stars may lead to the formation of a very massive star (above 100 Msun). In the past the study of the long-term evolution of merger remnants has mostly focussed on collisions between low-mass stars (up to about 2 Msun) in the context of blue-straggler formation. The evolution of collision products of more massive stars has not been as thoroughly investigated. In this paper we study the long-term evolution of a number of stellar mergers formed by the head-on collision of a primary star with a mass of 5-40 Msun with a lower mass star at three points in its evolution in order to better understand their evolution. We use smooth particle hydrodynamics (SPH) calculations to model the collision between the stars. The outcome of this calculation is reduced to one dimension and imported into a stellar evolution code. We follow the subsequent evolution of the collision product through the main sequence at least until the onset of helium burning. We find that little hydrogen is mixed into the core of the collision products, in agreement with previous studies of collisions between low-mass stars. For collisions involving evolved stars we find that during the merger the surface nitrogen abundance can be strongly enhanced. The evolution of most of the collision products proceeds analogously to that of normal stars with the same mass, but with a larger radius and luminosity. However, the evolution of collision products that form with a hydrogen depleted core is markedly different from that of normal stars with the same mass. They undergo a long-lived period of hydrogen shell burning close to the main-sequence band in the Hertzsprung-Russell diagram and spend the initial part of core helium burning as compact blue supergiants.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا