Do you want to publish a course? Click here

Quaternion algebras, Heegner points and the arithmetic of Hida families

143   0   0.0 ( 0 )
 Added by Stefano Vigni
 Publication date 2009
  fields
and research's language is English




Ask ChatGPT about the research

Given a newform f, we extend Howards results on the variation of Heegner points in the Hida family of f to a general quaternionic setting. More precisely, we build big Heegner points and big Heegner classes in terms of compatible families of Heegner points on towers of Shimura curves. The novelty of our approach, which systematically exploits the theory of optimal embeddings, consists in treating both the case of definite quaternion algebras and the case of indefinite quaternion algebras in a uniform way. We prove results on the size of Nekovav{r}s extended Selmer groups attached to suitable big Galois representations and we formulate two-variable Iwasawa main conjectures both in the definite case and in the indefinite case. Moreover, in the definite case we propose refined conjectures `a la Greenberg on the vanishing at the critical points of (twists of) the L-functions of the modular forms in the Hida family of f living on the same branch as f.



rate research

Read More

Let $k$ be a number field, let $X$ be a Kummer variety over $k$, and let $delta$ be an odd integer. In the spirit of a result by Yongqi Liang, we relate the arithmetic of rational points over finite extensions of $k$ to that of zero-cycles over $k$ for $X$. For example, we show that if the Brauer-Manin obstruction is the only obstruction to the existence of rational points on $X$ over all finite extensions of $k$, then the $2$-primary Brauer-Manin obstruction is the only obstruction to the existence of a zero-cycle of degree $delta$ on $X$ over $k$.
Let $k$ be a number field. In the spirit of a result by Yongqi Liang, we relate the arithmetic of rational points over finite extensions of $k$ to that of zero-cycles over $k$ for Kummer varieties over $k$. For example, for any Kummer variety $X$ over $k$, we show that if the Brauer-Manin obstruction is the only obstruction to the Hasse principle for rational points on $X$ over all finite extensions of $k$, then the ($2$-primary) Brauer-Manin obstruction is the only obstruction to the Hasse principle for zero-cycles of any given odd degree on $X$ over $k$. We also obtain similar results for products of Kummer varieties, K3 surfaces and rationally connected varieties.
We prove an abstract modularity result for classes of Heegner divisors in the generalized Jacobian of a modular curve associated to a cuspidal modulus. Extending the Gross-Kohnen-Zagier theorem, we prove that the generating series of these classes is a weakly holomorphic modular form of weight 3/2. Moreover, we show that any harmonic Maass forms of weight 0 defines a functional on the generalized Jacobian. Combining these results, we obtain a unifying framework and new proofs for the Gross-Kohnen-Zagier theorem and Zagiers modularity of traces of singular moduli, together with new geometric interpretations of the traces with non-positive index.
For $Gamma={hbox{PSL}_2( {mathbb Z})}$ the hyperbolic circle problem aims to estimate the number of elements of the orbit $Gamma z$ inside the hyperbolic disc centered at $z$ with radius $cosh^{-1}(X/2)$. We show that, by averaging over Heegner points $z$ of discriminant $D$, Selbergs error term estimate can be improved, if $D$ is large enough. The proof uses bounds on spectral exponential sums, and results towards the sup-norm conjecture of eigenfunctions, and the Lindelof conjecture for twists of the $L$-functions attached to Maa{ss} cusp forms.
The aim of this article is to prove, using complex Abel-Jacobi maps, that the subgroup generated by Heegner cycles associated with a fixed imaginary quadratic field in the Griffiths group of a Kuga-Sato variety over a modular curve has infinite rank. This generalises a classical result of Chad Schoen for the Kuga-Sato threefold, and complements work of Amnon Besser on complex multiplication cycles over Shimura curves. The proof relies on a formula for the image of Heegner cycles under the complex Abel-Jacobi map given in terms of explicit line integrals of even weight cusp forms on the complex upper half-plane. The latter is deduced from previous joint work of the author with Massimo Bertolini, Henri Darmon, and Kartik Prasanna by exploiting connections with generalised Heegner cycles. As a corollary, it is proved that the Griffiths group of the product of a Kuga-Sato variety with powers of an elliptic curve with complex multiplication has infinite rank. This recovers results of Ashay Burungale by a different and more direct approach.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا