Do you want to publish a course? Click here

Semileptonic form factors D to pi, K and B to pi, K from a fine lattice

158   0   0.0 ( 0 )
 Added by Marco Panero
 Publication date 2009
  fields
and research's language is English




Ask ChatGPT about the research

We extract the form factors relevant for semileptonic decays of D and B mesons from a relativistic computation on a fine lattice in the quenched approximation. The lattice spacing is a=0.04 fm (corresponding to a^{-1}=4.97 GeV), which allows us to run very close to the physical B meson mass, and to reduce the systematic errors associated with the extrapolation in terms of a heavy quark expansion. For decays of D and D_s mesons, our results for the physical form factors at q^2=0 are as follows: f_+^{D to pi}(0)= 0.74(6)(4), f_+^{D to K}(0)= 0.78(5)(4) and f_+^{D_s to K}(0)=0.68(4)(3). Similarly, for B and B_s we find: f_+^{B to pi}(0)=0.27(7)(5), f_+^{B to K}(0)=0.32(6)(6) and f_+^{B_s to K}(0)=0.23(5)(4). We compare our results with other quenched and unquenched lattice calculations, as well as with light-cone sum rule predictions, finding good agreement.



rate research

Read More

We present a model for the decay $D^+to K^-pi^+pi^+$. The weak interaction part of this reaction is described using the effective weak Hamiltonian in the factorisation approach. Hadronic final state interactions are taken into account through the $Kpi$ scalar and vector form factors fulfilling analyticity, unitarity and chiral symmetry constraints. Allowing for a global phase difference between the $S$ and $P$ waves of $-65^circ$, the Dalitz plot of the $D^+to K^-pi^+pi^+$ decay, the $Kpi$ invariant mass spectra and the total branching ratio due to $S$-wave interactions are well reproduced.
132 - S. Di Vita , B. Haas , V. Lubicz 2011
We present lattice results for the vector and scalar form factors of the semileptonic decays D -> pi ell u_ell and D -> K ell u_ell in the physical range of values of squared four momentum transfer q^2, obtained with N_f=2 maximally twisted Wilson fermions simulated at three different lattice spacings (a ~ 0.102 fm, 0.086 fm, 0.068 fm) with pion masses as light as 270 MeV and m_pi L gtrsim 4. The form factors are extracted using a double ratios strategy, which allows a good statistical accuracy and is independent of the vector current renormalization constant. The chiral/continuum extrapolation is performed through a simultaneous fit in the three variables (m_pi, q^2, a) using HMChPT formulae with additional O(a^2) terms that parametrically account for the lattice spacing dependence. Our results are in very good agreement with the experimental data in the full q^2 range for both D -> pi ell u_ell and D -> K ell u_ell. At zero momentum transfer we obtain f^{D->pi}(0) = 0.65(6)_{stat}(6)_{syst} and f^{D->K}(0) = 0.76(5)_{stat}(5)_{syst}, where the systematic error does not include the effects of quenching the strange and the charm quarks. Our findings are in good agreement with recent lattice calculations at N_f = 2+1.
We present results for form factors of semileptonic decays of $D$ and $B$ mesons in 2+1 flavor lattice QCD using the MILC gauge configurations. With an improved staggered action for light quarks, we successfully reduce the systematic error from the chiral extrapolation. The results for $D$ decays are in agreement with experimental ones. The results for B decays are preliminary. Combining our results with experimental branching ratios, we then obtain the CKM matrix elements $|V_{cd}|$, $|V_{cs}|$, $|V_{cb}|$ and $|V_{ub}|$. We also check CKM unitarity, for the first time, using only lattice QCD as the theoretical input.
We present the first lattice Nf=2+1+1 determination of the tensor form factor $f_T^{D pi(K)}(q^2)$ corresponding to the semileptonic and rare $D to pi(K)$ decays as a function of the squared 4-momentum transfer $q^2$. Together with our recent determination of the vector and scalar form factors we complete the set of hadronic matrix elements regulating the semileptonic and rare $D to pi(K)$ transitions within and beyond the Standard Model, when a non-zero tensor coupling is possible. Our analysis is based on the gauge configurations produced by ETMC with Nf=2+1+1 flavors of dynamical quarks, which include in the sea, besides two light mass-degenerate quarks, also the strange and charm quarks with masses close to their physical values. We simulated at three different values of the lattice spacing and with pion masses as small as 220 MeV. The matrix elements of the tensor current are determined for plenty of kinematical conditions in which parent and child mesons are either moving or at rest. As in the case of the vector and scalar form factors, Lorentz symmetry breaking due to hypercubic effects is clearly observed also in the data for the tensor form factor and included in the decomposition of the current matrix elements in terms of additional form factors. After the extrapolations to the physical pion mass and to the continuum and infinite volume limits we determine the tensor form factor in the whole kinematical region accessible in the experiments. A set of synthetic data points, representing our results for $f_T^{D pi(K)}(q^2)$ for several selected values of $q^2$, is provided and the corresponding covariance matrix is also available. At zero four-momentum transfer we get $f_T^{D pi}(0) = 0.506 (79)$ and $f_T^{D K}(0) = 0.687 (54)$, which correspond to $f_T^{D pi}(0)/f_+^{D pi}(0) = 0.827 (114)$ and $f_T^{D K}(0)/f_+^{D K}(0)= 0.898 (50)$.
We update QCD calculations of $B to pi, K$ form factors at large hadronic recoil by including the subleading-power corrections from the higher-twist $B$-meson light-cone distribution amplitudes (LCDAs) up to the twist-six accuracy and the strange-quark mass effects at leading-power in $Lambda/m_b$ from the twist-two $B$-meson LCDA $phi_B^{+}(omega, mu)$. The higher-twist corrections from both the two-particle and three-particle $B$-meson LCDAs are computed from the light-cone QCD sum rules (LCSR) at tree level. In particular, we construct the local duality model for the twist-five and -six $B$-meson LCDAs, in agreement with the corresponding asymptotic behaviours at small quark and gluon momenta, employing the QCD sum rules in heavy quark effective theory at leading order in $alpha_s$. The strange quark mass effects in semileptonic $B to K$ form factors yield the leading-power contribution in the heavy quark expansion, consistent with the power-counting analysis in soft-collinear effective theory, and they are also computed from the LCSR approach due to the appearance of the rapidity singularities. We further explore the phenomenological aspects of the semileptonic $B to pi ell u$ decays and the rare exclusive processes $B to K u u$, including the determination of the CKM matrix element $|V_{ub}|$, the normalized differential $q^2$ distributions and precision observables defined by the ratios of branching fractions for the above-mentioned two channels in the same intervals of $q^2$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا