Do you want to publish a course? Click here

The Large APEX Bolometer Camera LABOCA

101   0   0.0 ( 0 )
 Added by Axel Weiss
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Large APEX Bolometer Camera, LABOCA, has been commissioned for operation as a new facility instrument t the Atacama Pathfinder Experiment 12m submillimeter telescope. This new 295-bolometer total power camera, operating in the 870 micron atmospheric window, combined with the high efficiency of APEX and the excellent atmospheric transmission at the site, offers unprecedented capability in mapping submillimeter continuum emission for a wide range of astronomical purposes.

rate research

Read More

76 - Laura Gomez 2013
We present an analysis of the dust continuum emission at 870 um in order to investigate the mass distribution of clumps within infrared dark clouds (IRDCs). We map six IRDCs with the Large APEX BOlometer CAmera (LABOCA) at APEX, reaching an rms noise level of 28-44 mJy/beam. The dust continuum emission coming from these IRDCs was decomposed by using two automated algorithms, Gaussclumps and Clumpfind. Moreover, we carried out single-pointing observations of the N_2H^+ (3-2) line toward selected positions to obtain kinematic information. The mapped IRDCs are located in the range of kinematic distances of 2.7-3.2 kpc. We identify 510 and 352 sources with Gaussclumps and Clumpfind, respectively, and estimate masses and other physical properties assuming a uniform dust temperature. The mass ranges are 6-2692 Msun (Gaussclumps) and 7-4254 Msun (Clumpfind) and the ranges in effective radius are around 0.10-0.74 pc (Gaussclumps) and 0.16-0.99 pc (Clumpfind). The mass distribution, independent of the decomposition method used, is fitted by a power law, dN/dM propto M^alpha, with an index of -1.60 +/- 0.06, consistent with the CO mass distribution and other high-mass star-forming regions.
SCUBA-2 is an innovative 10000 pixel bolometer camera operating at submillimetre wavelengths on the James Clerk Maxwell Telescope (JCMT). The camera has the capability to carry out wide-field surveys to unprecedented depths, addressing key questions relating to the origins of galaxies, stars and planets. With two imaging arrays working simultaneously in the atmospheric windows at 450 and 850 microns, the vast increase in pixel count means that SCUBA-2 maps the sky 100-150 times faster than the previous SCUBA instrument. In this paper we present an overview of the instrument, discuss the physical characteristics of the superconducting detector arrays, outline the observing modes and data acquisition, and present the early performance figures on the telescope. We also showcase the capabilities of the instrument via some early examples of the science SCUBA-2 has already undertaken. In February 2012, SCUBA-2 began a series of unique legacy surveys for the JCMT community. These surveys will take 2.5 years and the results are already providing complementary data to the shorter wavelength, shallower, larger-area surveys from Herschel. The SCUBA-2 surveys will also provide a wealth of information for further study with new facilities such as ALMA, and future telescopes such as CCAT and SPICA.
We demonstrate the usability of mm-wavelength imaging data obtained from the APEX-SZ bolometer array to derive the radial temperature profile of the hot intra-cluster gas out to radius r_500 and beyond. The goal is to study the physical properties of the intra-cluster gas by using a non-parametric de-projection method that is, aside from the assumption of spherical symmetry, free from modeling bias. We use publicly available X-ray imaging data from the XMM-Newton observatory and our Sunyaev-Zeldovich Effect (SZE) imaging data from the APEX-SZ experiment at 150 GHz to de-project the density and temperature profiles for the relaxed cluster Abell 2204. We derive the gas density, temperature and entropy profiles assuming spherical symmetry, and obtain the total mass profile under the assumption of hydrostatic equilibrium. For comparison with X-ray spectroscopic temperature models, a re-analysis of the recent Chandra observation is done with the latest calibration updates. Using the non-parametric modeling we demonstrate a decrease of gas temperature in the cluster outskirts, and also measure the gas entropy profile. These results are obtained for the first time independently of X-ray spectroscopy, using SZE and X-ray imaging data. The contribution of the SZE systematic uncertainties in measuring T_e at large radii is shown to be small compared to the Chandra systematic spectroscopic errors. The upper limit on M_200 derived from the non-parametric method is consistent with the NFW model prediction from weak lensing analysis.
A technological milestone for experiments employing Transition Edge Sensor (TES) bolometers operating at sub-kelvin temperature is the deployment of detector arrays with 100s--1000s of bolometers. One key technology for such arrays is readout multiplexing: the ability to read out many sensors simultaneously on the same set of wires. This paper describes a frequency-domain multiplexed readout system which has been developed for and deployed on the APEX-SZ and South Pole Telescope millimeter wavelength receivers. In this system, the detector array is divided into modules of seven detectors, and each bolometer within the module is biased with a unique ~MHz sinusoidal carrier such that the individual bolometer signals are well separated in frequency space. The currents from all bolometers in a module are summed together and pre-amplified with Superconducting Quantum Interference Devices (SQUIDs) operating at 4 K. Room-temperature electronics demodulate the carriers to recover the bolometer signals, which are digitized separately and stored to disk. This readout system contributes little noise relative to the detectors themselves, is remarkably insensitive to unwanted microphonic excitations, and provides a technology pathway to multiplexing larger numbers of sensors.
The design of the camera support structures for the Cherenkov Telescope Array (CTA) Large Size Telescopes (LSTs) is based on an elliptical arch geometry reinforced along its orthogonal projection by two symmetric sets of stabilizing ropes. The main requirements in terms of minimal camera displacement, minimal weight, minimal shadowing on the telescope mirror, maximal strength of the structures and fast dynamical stabilization have led to the application of Carbon Fibre Plastic Reinforced (CFPR) technologies. This work presents the design, static and dynamic performance of the telescope fulfilling critical specifications for the major scientific objectives of the CTA LST, e.g. Gamma Ray Burst detection.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا