No Arabic abstract
We quantify the evolution of the spiral, S0 and elliptical fractions in galaxy clusters as a function of cluster velocity dispersion ($sigma$) and X-ray luminosity ($L_X$) using a new database of 72 nearby clusters from the WIde-Field Nearby Galaxy-cluster Survey (WINGS) combined with literature data at $z=0.5-1.2$. Most WINGS clusters have $sigma$ between 500 and 1100 $rm km s^{-1}$, and $L_X$ between 0.2 and $5 times 10^{44} rm erg/s$. The S0 fraction in clusters is known to increase with time at the expense of the spiral population. We find that the spiral and S0 fractions have evolved more strongly in lower $sigma$, less massive clusters, while we confirm that the proportion of ellipticals has remained unchanged. Our results demonstrate that morphological evolution since $z=1$ is not confined to massive clusters, but is actually more pronounced in low mass clusters, and therefore must originate either from secular (intrinsic) evolution and/or from environmental mechanisms that act preferentially in low-mass environments, or both in low- and high-mass systems. We also find that the evolution of the spiral fraction perfectly mirrors the evolution of the fraction of star-forming galaxies. Interestingly, at low-z the spiral fraction anticorrelates with $L_X$. Conversely, no correlation is observed with $sigma$. Given that both $sigma$ and $L_X$ are tracers of the cluster mass, these results pose a challenge for current scenarios of morphological evolution in clusters.
We investigate the 3D spin alignment of galaxies with respect to the large-scale filaments using the MaNGA survey. The cosmic web is reconstructed from the Sloan Digital Sky Survey using Disperse and the 3D spins of MaNGA galaxies are estimated using the thin disk approximation with integral field spectroscopy kinematics. Late-type spiral galaxies are found to have their spins parallel to the closest filaments axis. The alignment signal is found to be dominated by low-mass spirals. Spins of S0-type galaxies tend to be oriented preferentially in perpendicular direction with respect to the filaments axis. This orthogonal orientation is found to be dominated by S0s that show a notable misalignment between their kinematic components of stellar and ionised gas velocity fields and/or by low mass S0s with lower rotation support compared to their high mass counterparts. Qualitatively similar results are obtained when splitting galaxies based on the degree of ordered stellar rotation, such that galaxies with high spin magnitude have their spin aligned, and those with low spin magnitude in perpendicular direction to the filaments. In the context of conditional tidal torque theory, these findings suggest that galaxies spins retain memory of their larger-scale environment. In agreement with measurements from hydrodynamical cosmological simulations, the measured signal at low redshift is weak, yet statistically significant. The dependence of the spin-filament orientation of galaxies on their stellar mass, morphology and kinematics highlights the importance of sample selection to detect the signal.
(Abridged) We present mass models of a sample of 14 spiral and 14 S0 galaxies that constrain their stellar and dark matter content. For each galaxy we derive the stellar mass distribution from near-infrared photometry under the assumptions of axisymmetry and a constant Ks-band stellar mass-to-light ratio, (M/L)_Ks. To this we add a dark halo assumed to follow a spherically symmetric NFW profile and a correlation between concentration and dark mass within the virial radius, M_DM. We solve the Jeans equations for the corresponding potential under the assumption of constant anisotropy in the meridional plane, beta_z. By comparing the predicted second velocity moment to observed long-slit stellar kinematics, we determine the three best-fitting parameters of the model: (M/L)_Ks, M_DM and beta_z. These simple axisymmetric Jeans models are able to accurately reproduce the wide range of observed stellar kinematics, which typically extend to ~2-3 Re or, equivalently, ~0.5-1 R_25. We find a median stellar mass-to-light ratio at Ks-band of 1.09 (solar units) with an rms scatter of 0.31. We present preliminary comparisons between this large sample of dynamically determined stellar mass-to-light ratios and the predictions of stellar population models. The stellar population models predict slightly lower mass-to-light ratios than we measure. The mass models contain a median of 15 per cent dark matter by mass within an effective radius Re, and 49 per cent within the optical radius R_25. Dark and stellar matter contribute equally to the mass within a sphere of radius 4.1 Re or 1.0 R_25. There is no evidence of any significant difference in the dark matter content of the spirals and S0s in our sample.
Outflows driven by active galactic nuclei (AGN) are an important channel for accreting supermassive black holes (SMBHs) to interact with their host galaxies and clusters. Properties of the outflows are however poorly constrained due to the lack of kinetically resolved data of the hot plasma that permeates the circumgalactic and intracluster space. In this work, we use a single parameter, outflow-to-accretion mass-loading factor $m=dot{M}_{rm out}/dot{M}_{rm BH}$, to characterize the outflows that mediate the interaction between SMBHs and their hosts. By modeling both M87 and Perseus, and comparing the simulated thermal profiles with the X-ray observations of these two systems, we demonstrate that $m$ can be constrained between $200-500$. This parameter corresponds to a bulk flow speed between $4,000-7,000,{rm km,s}^{-1}$ at around 1 kpc, and a thermalized outflow temperature between $10^{8.7}-10^{9},{rm K}$. Our results indicate that the dominant outflow speeds in giant elliptical galaxies and clusters are much lower than in the close vicinity of the SMBH, signaling an efficient coupling with and deceleration by the surrounding medium on length scales below 1 kpc. Consequently, AGNs may be efficient at launching outflows $sim10$ times more massive than previously uncovered by measurements of cold, obscuring material. We also examine the mass and velocity distribution of the cold gas, which ultimately forms a rotationally supported disk in simulated clusters. The rarity of such disks in observations indicates that further investigations are needed to understand the evolution of the cold gas after it forms.
We demonstrate that the comparison of Tully-Fisher relations (TFRs) derived from global HI line widths to TFRs derived from the circular velocity profiles of dynamical models (or stellar kinematic observations corrected for asymmetric drift) is vulnerable to systematic and uncertain biases introduced by the different measures of rotation used. We therefore argue that to constrain the relative locations of the TFRs of spiral and S0 galaxies, the same tracer and measure must be used for both samples. Using detailed near-infrared imaging and the circular velocities of axisymmetric Jeans models of 14 nearby edge-on Sa-Sb spirals and 14 nearby edge-on S0s drawn from a range of environments, we find that S0s lie on a TFR with the same slope as the spirals, but are on average 0.53+/-0.15 mag fainter at Ks-band at a given rotational velocity. This is a significantly smaller offset than that measured in earlier studies of the S0 TFR, which we attribute to our elimination of the bias associated with using different rotation measures and our use of earlier type spirals as a reference. Since our measurement of the offset avoids systematic biases, it should be preferred to previous estimates. A spiral stellar population in which star formation is truncated would take ~1 Gyr to fade by 0.53 mag at Ks-band. If S0s are the products of a simple truncation of star formation in spirals, then this finding is difficult to reconcile with the observed evolution of the spiral/S0 fraction with redshift. Recent star formation could explain the observed lack of fading in S0s, but the offset of the S0 TFR persists as a function of both stellar and dynamical mass. We show that the offset of the S0 TFR could therefore be explained by a systematic difference between the total mass distributions of S0s and spirals, in the sense that S0s need to be smaller or more concentrated than spirals.
We construct mass models of 28 S0-Sb galaxies. The models have an axisymmetric stellar component and a NFW dark halo and are constrained by observed Ks-band photometry and stellar kinematics. The median dark halo virial mass is 10^12.8 Msun, and the median dark/total mass fraction is 20% within a sphere of radius r_1/2, the intrinsic half-light radius, and 50% within R_25. We compare the Tully-Fisher relations of the spirals and S0s in the sample and find that S0s are 0.5 mag fainter than spirals at Ks-band and 0.2 dex less massive for a given rotational velocity. We use this result to rule out scenarios in which spirals are transformed into S0s by processes which truncate star formation without affecting galaxy dynamics or structure, and raise the possibility of a break in homology between spirals and S0s.