Significant advances in the discovery and characterization of the planetary systems of nearby stars can be accomplished with a moderate aperture high performance coronagraphic space mission that could be started in the next decade. Its observations would make significant progress in studying terrestrial planets in their habitable zones to giant planets and circumstellar debris disks, also informing the design of a more capable future mission. It is quite exciting that such fundamental exoplanet science can be done with relatively modest capabilities.
In this paper, we review the various ways in which an infrared stellar interferometer can be used to perform direct detection of extrasolar planetary systems. We first review the techniques based on classical stellar interferometry, where (complex) visibilities are measured, and then describe how higher dynamic ranges can be achieved with nulling interferometry. The application of nulling interferometry to the study of exozodiacal discs and extrasolar planets is then discussed and illustrated with a few examples.
The Kepler space telescope yielded unprecedented data for the study of solar-like oscillations in other stars. The large samples of multi-year observations posed an enormous data analysis challenge that has only recently been surmounted. Asteroseismic modeling has become more sophisticated over time, with better methods gradually developing alongside the extended observations and improved data analysis techniques. We apply the latest version of the Asteroseismic Modeling Portal (AMP) to the full-length Kepler data sets for 57 stars and the Sun, comprising planetary hosts, binaries, solar-analogs, and active stars. From an analysis of the derived stellar properties for the full sample, we identify a variation of the mixing-length parameter with atmospheric properties. We also derive a linear relation between the stellar age and a characteristic frequency separation ratio. In addition, we find that the empirical correction for surface effects suggested by Kjeldsen and coworkers is adequate for solar-type stars that are not much hotter (Teff < 6200 K) or significantly more evolved (logg > 4.2, <Delta_nu> > 80 muHz) than the Sun. Precise parallaxes from the Gaia mission and future observations from TESS and PLATO promise to improve the reliability of stellar properties derived from asteroseismology.
The NEAT (Nearby Earth Astrometric Telescope) mission is a proposal submitted to ESA for its 2010 call for M-size mission within the Cosmic Vision 2015-2025 plan. The main scientific goal of the NEAT mission is to detect and characterize planetary systems in an exhaustive way down to 1 Earth mass in the habitable zone and further away, around nearby stars for F, G, and K spectral types. This survey would provide the actual planetary masses, the full characterization of the orbits including their inclination, for all the components of the planetary system down to that mass limit. NEAT will continue the work performed by Hipparcos and Gaia by reaching a precision that is improved by two orders of magnitude on pointed targets.
The orbits of 8 systems with low-mass components (HIP 14524, HIP 16025, HIP 28671, HIP 46199, HIP 47791, HIP 60444, HIP 61100 and HIP 73085) are presented. Speckle interferometric data were obtained at the 6 m Big Alt-azimuth Special Astrophysical Observatory of the Russian Academy of Sciences (BTA SAO RAS) from 2007 to 2019. New data, together with measures already in the literature, made it possible to improve upon previous orbital solutions in six cases and to construct orbits for the first time in the two remaining cases (HIP 14524 and HIP 60444). Mass sums are obtained using both Hipparcos and Gaia parallaxes, and a comparison with previously published values is made. Using the Worley & Heintz criteria, the classiffcation of the orbits constructed is carried out.
The NEAT (Nearby Earth Astrometric Telescope) mission is a proposition submitted to ESA for its 2010 call for M-size mission. The main scientific goal is to detect and characterize planetary systems in an exhaustive way down to 1 Earth mass in the habitable zone and further away, around nearby stars for F, G, and K spectral types. This survey would provide the actual planetary masses, the full characterization of the orbits including their inclination, for all the components of the planetary system down to that mass limit. Extremely- high-precision astrometry, in space, can detect the dynamical effect due to even low mass orbiting planets on their central star, reaching those scientific goals. NEAT will continue the work performed by Hipparcos (1mas precision) and Gaia (7{mu}as aimed) by reaching a precision that is improved by two orders of magnitude (0.05{mu}as, 1{sigma} accuracy). The two modules of the payload, the telescope and the focal plane, must be placed 40m away leading to a formation flying option studied as the reference mission. NEAT will operate at L2 for 5 years, the telescope satellite moving around the focal plane one to point different targets and allowing whole sky coverage in less than 20 days. The payload is made of 3 subsystems: primary mirror and its dynamic support, the focal plane with the detectors, and the metrology. The principle is to measure the angles between the target star, usually bright (R leq 6), and fainter reference stars (R leq 11) using a metrology system that projects dynamical Youngs fringes onto the focal plane. The proposed architecture relies on two satellites of about 700 kg, offering a capability of more than 20,000 reconfigurations. The two satellites are launched in a stacked configuration using a Soyuz ST launch, and are deployed after launch to individually perform cruise to their operational Lissajous orbit.
Tom Greene
,Kerri Cahoy
,Olivier Guyon
.
(2009)
.
"Discovering and Characterizing the Planetary Systems of Nearby Stars: The scientific need for medium aperture space coronagraph observations"
.
Thomas Greene
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا