No Arabic abstract
Here we present a program aimed at free-energy calculations in molecular systems. It consists of a series of routines that can be interfaced with the most popular classical molecular dynamics (MD) codes through a simple patching procedure. This leaves the possibility for the user to exploit many different MD engines depending on the system simulated and on the computational resources available. Free-energy calculations can be performed as a function of many collective variables, with a particular focus on biological problems, and using state-of-the-art methods such as metadynamics, umbrella sampling and Jarzynski-equation based steered MD. The present software, written in ANSI-C language, can be easily interfaced with both fortran and C/C++ codes.
This chapter discusses how the PLUMED plugin for molecular dynamics can be used to analyze and bias molecular dynamics trajectories. The chapter begins by introducing the notion of a collective variable and by then explaining how the free energy can be computed as a function of one or more collective variables. A number of practical issues mostly around periodic boundary conditions that arise when these types of calculations are performed using PLUMED are then discussed. Later parts of the chapter discuss how PLUMED can be used to perform enhanced sampling simulations that introduce simulation biases or multiple replicas of the system and Monte Carlo exchanges between these replicas. This section is then followed by a discussion on how free-energy surfaces and associated error bars can be extracted from such simulations by using weighted histogram and block averaging techniques.
Enhancing sampling and analyzing simulations are central issues in molecular simulation. Recently, we introduced PLUMED, an open-source plug-in that provides some of the most popular molecular dynamics (MD) codes with implementations of a variety of different enhanced sampling algorithms and collective variables (CVs). The rapid changes in this field, in particular new directions in enhanced sampling and dimensionality reduction together with new hardwares, require a code that is more flexible and more efficient. We therefore present PLUMED 2 here - a complete rewrite of the code in an object-oriented programming language (C++). This new version introduces greater flexibility and greater modularity, which both extends its core capabilities and makes it far easier to add new methods and CVs. It also has a simpler interface with the MD engines and provides a single software library containing both tools and core facilities. Ultimately, the new code better serves the ever-growing community of users and contributors in coping with the new challenges arising in the field.
Molecular dynamics is one of the most commonly used approaches for studying the dynamics and statistical distributions of many physical, chemical, and biological systems using atomistic or coarse-grained models. It is often the case, however, that the interparticle forces drive motion on many time scales, and the efficiency of a calculation is limited by the choice of time step, which must be sufficiently small that the fastest force components are accurately integrated. Multiple time-stepping algorithms partially alleviate this inefficiency by assigning to each time scale an appropriately chosen step-size. However, such approaches are limited by resonance phenomena, wherein motion on the fastest time scales limits the step sizes associated with slower time scales. In atomistic models of biomolecular systems, for example, resonances limit the largest time step to around 5-6 fs. In this paper, we introduce a set of stochastic isokinetic equations of motion that are shown to be rigorously ergodic and that can be integrated using a multiple time-stepping algorithm that can be easily implemented in existing molecular dynamics codes. The technique is applied to a simple, illustrative problem and then to a more realistic system, namely, a flexible water model. Using this approach outer time steps as large as 100 fs are shown to be possible.
The process of RNA base fraying (i.e. the transient opening of the termini of a helix) is involved in many aspects of RNA dynamics. We here use molecular dynamics simulations and Markov state models to characterize the kinetics of RNA fraying and its sequence and direction dependence. In particular, we first introduce a method for determining biomolecular dynamics employing core-set Markov state models constructed using an advanced clustering technique. The method is validated on previously reported simulations. We then use the method to analyze extensive trajectories for four different RNA model duplexes. Results obtained using D. E. Shaw research and AMBER force fields are compared and discussed in detail, and show a non-trivial interplay between the stability of intermediate states and the overall fraying kinetics.
We present a reversible and symplectic algorithm called ROLL, for integrating the equations of motion in molecular dynamics simulations of simple fluids on a hypersphere $mathcal{S}^d$ of arbitrary dimension $d$. It is derived in the framework of geometric algebra and shown to be mathematically equivalent to algorithm RATTLE. An application to molecular dynamics simulation of the one component plasma is briefly discussed.