Do you want to publish a course? Click here

Single crystals of LnFeAsO1-xFx (Ln=La, Pr, Nd, Sm, Gd) and Ba1-xRbxFe2As2: growth, structure and superconducting properties

312   0   0.0 ( 0 )
 Added by Nikolai Zhigadlo
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

A review of our investigations on single crystals of LnFeAsO1-xFx (Ln=La, Pr, Nd, Sm, Gd) and Ba1-xRbxFe2As2 is presented. A high pressure technique has been applied for the growth of LnFeAsO1-xFx crystals, while Ba1-xRbxFe2As2 crystals were grown using quartz ampoule method. Single crystals were used for electrical transport, structure, magnetic torque and spectroscopic studies. Investigations of the crystal structure confirmed high structural perfection and show less than full occupation of the (O, F) position in superconducting LnFeAsO1-xFx crystals. Resistivity measurements on LnFeAsO1-xFx crystals show a significant broadening of the transition in high magnetic fields, whereas the resistive transition in Ba1 xRbxFe2As2 simply shifts to lower temperature. Critical current density for both compounds is relatively high and exceeds 2x109 A/m2 at 15 K in 7 T. The anisotropy of magnetic penetration depth, measured on LnFeAsO1-xFx crystals by torque magnetometry is temperature dependent and apparently larger than the anisotropy of the upper critical field. Ba1-xRbxFe2As2 crystals are electronically significantly less anisotropic. Point-Contact Andreev-Reflection spectroscopy indicates the existence of two energy gaps in LnFeAsO1-xFx. Scanning Tunneling Spectroscopy reveals in addition to a superconducting gap, also some feature at high energy (~20 meV).



rate research

Read More

Single crystals of the LnFeAsO (Ln1111, Ln = Pr, Nd, and Sm) family with lateral dimensions up to 1 mm were grown from NaAs and KAs flux at high pressure. The crystals are of good structural quality and become superconducting when O is partially substituted by F (PrFeAsO1-xFx and NdFeAsO1-xFx) or when Fe is substituted by Co (SmFe1-xCoxAsO). From magnetization measurements, we estimate the temperature dependence and anisotropy of the upper critical field and the critical current density of underdoped PrFeAsO0.7F0.3 crystal with Tc = 25 K. Single crystals of SmFe1-xCoxAsO with maximal Tc up to 16.3 K for x = 0.08 were grown for the first time. From transport and magnetic measurements we estimate the critical fields and their anisotropy, and find these superconducting properties to be quite comparable to the ones in SmFeAsO1-xFx with a much higher Tc of = 50 K. The magnetically measured critical current densities are as high as 109 A/m2 at 2 K up to 7 T, with indication of the usual fishtail effect. The upper critical field estimated from resistivity measurements is anisotropic with slopes of -8.7 T/K (H // ab-plane) and -1.7 T/K (H // c-axis). This anisotropy (= 5) is similar to that in other Ln1111 crystals with various higher Tc s.
72 - S.Lee , H.Mori , T.Masui 2001
Here we report the growth of sub-millimeter MgB2 single crystals of various shapes under high pressure in Mg-B-N system. Structure refinement using a single-crystal X-ray diffraction analysis gives lattice parameters a=3.0851(5) A and c=3.5201(5) A with small reliability factors (Rw =0.025, R=0.018), which enables us to analyze the Fourier and Fourier difference maps. The maps clearly show the B sp2 orbitals and covalency of the B-B bonds. The sharp superconducting transitions at Tc =38.1-38.3K were obtained in both magnetization (DTc =0.6K) and resistivity (DTc <0.3K) measurements. Resistivity measurements with magnetic fields applied parallel and perpendicular to the Mg and B sheets reveal the anisotropic nature of this compound, with upper critical field anisotropy ratio of about 2.7.
F-substituted ROBiS2 (R = La, Ce, Nd) superconducting single crystals with different F concentration were grown successfully using CsCl/KCl flux. All the obtained single crystals had a plate-like shape with a well-developed ab-plane of 1-2 mm in size. The flux components of Cs, K, and Cl were not detected in the obtained single crystals by electron probe microanalysis. The grown single crystals of F-substituted LaOBiS2 and CeOBiS2 showed superconducting at about 3 K while the Tc of the F-substituted NdOBiS2 exhibited approximately 5 K. The superconducting anisotropy of the single crystals of F-substituted LaOBiS2 and NdOBiS2 was estimated to be 30-45 according to the effective mass model whereas those values were 13-21 for the F-substituted CeOBiS2 single crystals. The F-substituted CeOBiS2 single crystals exhibited magnetic order at about 7 K that apparently coexisted with superconductivity below around 3 K.
We have succeeded in synthesizing single-phase polycrystalline samples of oxygen-deficient oxypnictide superconductors, LnFeAsO1-y (Ln: lanthanide elements) with Ln=La, Ce, Pr, Nd, Sm, Gd, Tb and Dy using high-pressure synthesis technique. It is found out that the synthesis pressure is the most important parameter for synthesizing single-phase samples, in particular for the heavier Ln?s, such as Tb and Dy. The lattice parameters systematically decrease with the atomic number of Ln, reflecting the shrinkage of Ln ionic radius. For the lighter Ln?s (La, Ce, Pr, Nd), Tc increases monotonously with decreasing the lattice parameters from 26K for Ln=La to 54K for Ln=Nd, then stays at the constant value around 53K for the heavier counterpart (Nd, Sm, Gd, Tb and Dy). The results suggest the intimate relationship between the crystal structural parameters and the superconductivity on the one hand, as well as the possible existence of the inherent maximum Tc on the other, which is located around 50 K in the LnFeAsO based materials.
85 - Xu Duan , Fan Wu , Jia Chen 2018
We have performed systematic first principles study of the electronic structure and band topology properties of $LnPn$ compounds ($Ln$=Ce, Pr, Gd, Sm, Yb; $Pn$=Sb, Bi). Assuming the $f$-electrons are well localized in these materials, both hybrid functional and modified Becke-Johnson calculations yield electronic structure in good agreement with experimental observations, while generalized gradient approximation calculations severely overestimate the band
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا