We report five new measurements of central black hole masses based on STIS and WFPC2 observations with the Hubble Space Telescope and on axisymmetric, three-integral, Schwarzschild orbit-library kinematic models. We selected a sample of galaxies within a narrow range in velocity dispersion that cover a range of galaxy parameters (including Hubble type and core/power-law surface density profile) where we expected to be able to resolve the galaxys sphere of influence based on the predicted value of the black hole mass from the M-sigma relation. We find masses in units of 10^8 solar masses for the following galaxies: NGC 3585, M_BH = 3.4 (+1.5, -0.6); NGC 3607, M_BH = 1.2 (+0.4, -0.4); NGC 4026, M_BH = 2.1 (+0.7, -0.4); and NGC 5576, M_BH = 1.8 (+0.3, -0.4), all significantly excluding M_BH = 0. For NGC 3945, M_BH = 0.09 (+0.17, -0.21), which is significantly below predictions from M-sigma and M-L relations and consistent with M_BH = 0, though the presence of a double bar in this galaxy may present problems for our axisymmetric code.