Do you want to publish a course? Click here

A Progress Report on the Carbon Dominated Atmosphere White Dwarfs

141   0   0.0 ( 0 )
 Added by Patrick Dufour
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recently, Dufour et al. (2007) reported the unexpected discovery that a few white dwarfs found in the Sloan Digital Sky Survey had an atmosphere dominated by carbon with little or no trace of hydrogen and helium. Here we present a progress report on these new objects based on new high signal-to-noise follow-up spectroscopic observations obtained at the 6.5m MMT telescope on Mount Hopkins, Arizona.



rate research

Read More

We present some of the results of a survey aimed at exploring the asteroseismological potential of the newly-discovered carbon-atmosphere white dwarfs. We show that, in certains regions of parameter space, carbon-atmosphere white dwarfs may drive low-order gravity modes. We demonstrate that our theoretical results are consistent with the recent exciting discovery of luminosity variations in SDSS J1426+5752 and some null results obtained by a team of scientists at McDonald Observatory. We also present follow-up photometric observations carried out by ourselves at the Mount Bigelow 1.6-m telescope using the new Mont4K camera. The results of follow-up spectroscopic observations at the MMT are also briefly reported, including the surprising discovery that SDSS J1426+5752 is not only a pulsating star but that it is also a magnetic white dwarf with a surface field near 1.2 MG. The discovery of $g$-mode pulsations in SDSS J1426+5752 is quite significant in itself as it opens a fourth asteroseismological window, after the GW Vir, V777 Her, and ZZ Ceti families, through which one may study white dwarfs.
We perform a calibration of the mixing length parameter at the bottom boundary of the convection zone for helium-dominated atmospheres of white dwarfs. This calibration is based on a grid of 3D DB (pure-helium) and DBA (helium-dominated with traces of hydrogen) model atmospheres computed with the CO5BOLD code, and a grid of 1D DB and DBA envelope structures. The 3D models span a parameter space of hydrogen-to-helium abundances between -10.0 and -2.0, surface gravities between 7.5 and 9.0 and effective temperatures between 12000 K and 34000 K. The 1D envelopes cover a similar atmospheric parameter range, but are also calculated with different values of the mixing length parameter, namely ML2/alpha between 0.4 and 1.4. The calibration is performed based on two definitions of the bottom boundary of the convection zone, the Schwarzschild and the zero convective flux boundaries. Thus, our calibration is relevant for applications involving the bulk properties of the convection zone including its total mass, which excludes the spectroscopic technique. Overall, the calibrated ML2/alpha is smaller than what is commonly used in evolutionary models and theoretical determinations of the blue edge of the instability strip for pulsating DB and DBA stars. With calibrated ML2/alpha we are able to deduce more accurate convection zone sizes needed for studies of planetary debris mixing and dredge-up of carbon from the core. We highlight this by calculating examples of metal-rich 3D DBAZ models and finding their convection zone masses. Mixing length calibration represents the first step of in-depth investigations of convective overshoot in white dwarfs with helium-dominated atmospheres.
We explore changes in the adiabatic low-order g-mode pulsation periods of 0.526, 0.560, and 0.729 M$_odot$ carbon-oxygen white dwarf models with helium-dominated envelopes due to the presence, absence, and enhancement of $^{22}$Ne in the interior. The observed g-mode pulsation periods of such white dwarfs are typically given to 6$-$7 significant figures of precision. Usually white dwarf models without $^{22}$Ne are fit to the observed periods and other properties. The root-mean-square residuals to the $simeq$ 150$-$400 s low-order g-mode periods are typically in the range of $sigma_{rms}$ $lesssim$ 0.3 s, for a fit precision of $sigma_{rms}/ P$ $lesssim$ 0.3 %. We find average relative period shifts of $Delta P/P$ $simeq$ $pm$ 0.5 % for the low-order dipole and quadrupole g-mode pulsations within the observed effective temperature window, with the range of $Delta P/P$ depending on the specific g-mode, abundance of $^{22}$Ne, effective temperature, and mass of the white dwarf model. This finding suggests a systematic offset may be present in the fitting process of specific white dwarfs when $^{22}$Ne is absent. As part of the fitting processes involves adjusting the composition profiles of a white dwarf model, our study on the impact of $^{22}$Ne can provide new inferences on the derived interior mass fraction profiles. We encourage routinely including $^{22}$Ne mass fraction profiles, informed by stellar evolution models, to future generations of white dwarf model fitting processes.
199 - Chengyuan Wu , Bo Wang 2019
The carbon-oxygen white dwarf (CO WD) + He star channel is one of the promising ways for producing type Ia supernovae (SNe Ia) with short delay times. Recent studies found that carbon under the He-shell can be ignited if the mass-accretion rate of CO WD is higher than a critical rate (about 2 * 10^-6 Msun/yr), triggering an inwardly propagating carbon flame. Previous studies usually supposed that the off-centre carbon flame would reach the centre, resulting in the formation of an oxygen-neon (ONe) WD that will collapse into a neutron star. However, the process of off-centre carbon burning is not well studied. This may result in some uncertainties on the final fates of CO WDs. By employing MESA, we simulated the long-term evolution of off-centre carbon burning in He-accreting CO WDs. We found that the inwardly propagating carbon flame transforms the CO WDs into OSi cores directly but not ONe cores owing to the high temperature of the burning front. We suggest that the final fates of the CO WDs may be OSi WDs under the conditions of off-centre carbon burning, or explode as iron-core-collapse SNe if the mass-accretion continues. We also found that the mass-fractions of silicon in the OSi cores are sensitive to the mass-accretion rates.
As they evolve, white dwarfs undergo major changes in surface composition, a phenomenon known as spectral evolution. In particular, some stars enter the cooling sequence with helium atmospheres (type DO) but eventually develop hydrogen atmospheres (type DA), most likely through the upward diffusion of residual hydrogen. Our empirical knowledge of this process remains scarce: the fractions of white dwarfs that are born helium-rich and that experience the DO-to-DA transformation are poorly constrained. We tackle this issue by performing a detailed model-atmosphere investigation of 1806 hot ($T_{rm eff} ge 30,000$ K) white dwarfs observed spectroscopically by the Sloan Digital Sky Survey. We first introduce our new generations of model atmospheres and theoretical cooling tracks, both appropriate for hot white dwarfs. We then present our spectroscopic analysis, from which we determine the atmospheric and stellar parameters of our sample objects. We find that $sim$24% of white dwarfs begin their degenerate life as DO stars, among which $sim$2/3 later become DA stars. We also infer that the DO-to-DA transition occurs at substantially different temperatures ($75,000 {rm K} > T_{rm eff} > 30,000$ K) for different objects, implying a broad range of hydrogen content within the DO population. Furthermore, we identify 127 hybrid white dwarfs, including 31 showing evidence of chemical stratification, and we discuss how these stars fit in our understanding of the spectral evolution. Finally, we uncover significant problems in the spectroscopic mass scale of very hot ($T_{rm eff} > 60,000$ K) white dwarfs.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا