On the Computation of Matrices of Traces and Radicals of Ideals


Abstract in English

Let $f_1,...,f_s in mathbb{K}[x_1,...,x_m]$ be a system of polynomials generating a zero-dimensional ideal $I$, where $mathbb{K}$ is an arbitrary algebraically closed field. We study the computation of matrices of traces for the factor algebra $A := CC[x_1, ..., x_m]/ I$, i.e. matrices with entries which are trace functions of the roots of $I$. Such matrices of traces in turn allow us to compute a system of multiplication matrices ${M_{x_i}|i=1,...,m}$ of the radical $sqrt{I}$. We first propose a method using Macaulay type resultant matrices of $f_1,...,f_s$ and a polynomial $J$ to compute moment matrices, and in particular matrices of traces for $A$. Here $J$ is a polynomial generalizing the Jacobian. We prove bounds on the degrees needed for the Macaulay matrix in the case when $I$ has finitely many projective roots in $mathbb{P}^m_CC$. We also extend previous results which work only for the case where $A$ is Gorenstein to the non-Gorenstein case. The second proposed method uses Bezoutian matrices to compute matrices of traces of $A$. Here we need the assumption that $s=m$ and $f_1,...,f_m$ define an affine complete intersection. This second method also works if we have higher dimensional components at infinity. A new explicit description of the generators of $sqrt{I}$ are given in terms of Bezoutians.

Download