No Arabic abstract
Thanks to their wavelength diversity and to their excellent uniformity, Quantum Well Infrared Photodetectors (QWIP) emerge as potential candidates for astronomical or defense applications in the very long wavelength infrared (VLWIR) spectral domain. However, these applications deal with very low backgrounds and are very stringent on dark current requirements. In this paper, we present the full electro-optical characterization of a 15 micrometer QWIP, with emphasis on the dark current measurements. Data exhibit striking features, such as a plateau regime in the IV curves at low temperature (4 to 25 K). We show that present theories fail to describe this phenomenon and establish the need for a fully microscopic approach.
We calculate the characteristics of interband HgTe-CdHgTe quantum-well infrared photodetectors (QWIPs). Due to a small probability of the electron capture into the QWs, the interband HgTe-CdHgTe QWIPs can exhibit very high photoconductive gain. Our analysis demonstrates significant potential advantages of these devices compared to the conventional CdHgTe photodetectors and the A$_3$B$_5$ heterostructures.
We report tunneling phenomena in double In$_{0.53}$Ga$_{0.47}$As quantum-well structures that are at odds with the conventional parallel-momentum-conserving picture of tunneling between two-dimensional systems. We found that the tunneling current was mostly determined by the correlation between the emitter and the state in one well, and not by that between those in both wells. Clear magnetic-field-dependent features were first observed before the main resonance, corresponding to tunneling channels into the Landau levels of the well near the emitter. These facts provide evidence of the violation of in-plane momentum conservation in two-dimensional systems.
A recent mean-field approach to the fractional quantum Hall effect (QHE) is reviewed, with a special emphasis on the application to single-electron tunneling through a quantum dot in a high magnetic field. The theory is based on the adiabatic principle of Greiter and Wilczek, which maps an incompressible state in the integer QHE on the fractional QHE. The single-particle contribution to the addition spectrum is analyzed, for a quantum dot with a parabolic confining potential. The spectrum is shown to be related to the Fock-Darwin spectrum in the integer QHE, upon substitution of the electron charge by the fractional quasiparticle charge. Implications for the periodicity of the Aharonov-Bohm oscillations in the conductance are discussed.
Quantum-well (QW) devices have been extensively investigated in semiconductor structures. More recently, spin-polarized QWs were integrated into magnetic tunnel junctions (MTJs). In this work, we demonstrate the spin-based control of the quantized states in iron $3d$-band QWs, as observed in experiments and theoretical calculations. We find that the magnetization rotation in the Fe QWs significantly shifts the QW quantization levels, which modulate the resonant-tunneling current in MTJs, resulting in a tunneling anisotropic magnetoresistance (TAMR) effect of QWs. This QW-TAMR effect is sizable compared to other types of TAMR effect, and it is present above the room-temperature. In a QW MTJ of Cr/Fe/MgAl$_2$O$_4$/top electrode, where the QW is formed by a mismatch between Cr and Fe in the $d$ band with $Delta_1$ symmetry, a QW-TAMR ratio of up to 5.4 % was observed at 5 K, which persisted to 1.2 % even at 380K. The magnetic control of QW transport can open new applications for spin-coupled optoelectronic devices, ultra-thin sensors, and memories.
We examine effects of inversion asymmetry of a GaAs/Al0.3Ga0.7As quantum well (QW) on electron-nuclear spin coupling in the fractional quantum Hall (QH) regime. Increasing the QW potential asymmetry at a fixed Landau-level filling factor (nu) with gate voltages suppresses the current-induced nuclear spin polarization in the nu = 2/3 Ising QH ferromagnet, while it significantly enhances the nuclear spin relaxation at general nu. These findings suggest that mixing of different spin states due to the Rashba spin-orbit interaction strongly affects the electron-nuclear spin coupling.